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Abstract
Reasoning about causality and agent causal knowl-
edge is critical for effective decision-making and
planning in multi-agent contexts. Previous work in
the area generally assumes that the domain is deter-
ministic, but in fact many agents operate in nonde-
terministic domains where the outcome of their ac-
tions depends on unpredictable environment reac-
tions. In this paper, we propose a situation calculus-
based framework for reasoning about causal knowl-
edge in nondeterministic domains. In such do-
mains, the agent may not know the environment re-
actions to her actions and their outcomes, and may
be uncertain about which actions caused a condi-
tion to come about. But she can perform sensing
actions to acquire knowledge about the state and
use it to gain knowledge about causes. Our formal-
ization recognizes sensing actions as causes of both
physical and epistemic effects. We also examine
how regression can be used to reason about causal
knowledge.

1 Introduction
Actual or token-level causality [Halpern, 2016] refers to the
problem of determining the causes of observed effects from
a perceived history of actions. Actual causality plays a cru-
cial role in effective decision-making and planning in multi-
agent systems. For instance, when an agent’s plans fail to
bring about her goals, it would be useful to understand why
they failed, as this can aid the task of replanning by allow-
ing the agent to generate better plans. However, for this to
work, the agent must be able to reason about her own as
well as other agents’ causal knowledge. While extensive re-
search has been conducted on actual causality [Pearl, 1998;
Pearl, 2000; Halpern, 2000; Eiter and Lukasiewicz, 2002;
Bochman, 2003; Hopkins, 2005; Hopkins and Pearl, 2007;
Halpern, 2015; Batusov and Soutchanski, 2017; Batusov and
Soutchanski, 2018; Bochman, 2018; Khan and Soutchan-
ski, 2020; Beckers, 2021; Gladyshev et al., 2023; Bochman,
2023], only a couple deal with causal knowledge [Chockler
et al., 2015; Khan and Lespérance, 2021].

A distinguishing feature of the real world is that change
is often unpredictable. Unfortunately, the vast majority of

the work in the area has focused on deterministic domains
and only recently have researchers started investigating actual
causation in nondeterministic domains [Rostamigiv et al.,
2024; Beckers, 2024; Khan et al., 2025], where the outcome
of the agent’s actions depends on unpredictable environment
reactions. Importantly, none have studied causal knowledge
and its dynamics in such nondeterministic domains.

To deal with this, in this paper we propose a framework
for reasoning about causal knowledge in nondeterministic
domains. Our formalization is based on the recently pro-
posed nondeterministic situation calculus (NDSC) [De Gia-
como and Lespérance, 2021] and a model of actual causation
in the situation calculus [Khan and Lespérance, 2021]. In our
account, the agent may not know the environment reactions
to her actions and their outcomes, and may be uncertain about
which actions caused a condition to come about. But she can
perform sensing actions to acquire knowledge about the state
and use it to gain knowledge about causes. Our formalization
supports reasoning about observed epistemic effects, recog-
nizes sensing actions as causes of both physical and epistemic
effects, and allows an agent to acquire causal knowledge by
performing knowledge-producing actions. We also examine
how regression can be used to reason about causal knowledge.

Our contribution in this paper is three-fold. First, we give
a new successor-state axiom for the knowledge-accessibility
relation and show how one can model knowledge update in
the NDSC, and study some of its properties. As we will see,
this is quite different from its deterministic situation calculus
counterpart, as in such NDSC domains an agent might lose
knowledge after executing an action. Secondly, we discuss
how a recently proposed account of causation in the situation
calculus [Khan and Lespérance, 2021] can be naturally com-
bined with this account of knowledge in the NDSC to model
causal knowledge in the NDSC. As mentioned, our formal-
ization supports epistemic effects and recognizes sensing ac-
tions as causes. Finally, we extend knowledge regression in
the situation calculus [Scherl and Levesque, 2003] and show
how one can reason about causal knowledge in the NDSC.

2 Action and Nondeterminism
Situation Calculus (SC). Our base framework is the situation
calculus [McCarthy and Hayes, 1969; Reiter, 2001], which
we will not cover in detail here, except to remind the reader
of the following: S0 is used to denote the initial situation,



do(a, s) for the successor situation to s resulting from per-
forming the action a, and do([a1, · · · , an], s) to represent the
situation resulting from executing actions a1, · · · , an, start-
ing with situation s. Relational/functional fluents take situa-
tion terms as their last argument. Poss(a, s) states that action
a is executable in situation s. s ⊏ s′ represents that s′ can
be reached from situation s by executing some sequence of
actions. s ⊑ s′

.
= s ⊏ s′ ∨ s = s′. s < s′ is an abbre-

viation of s ⊏ s′ ∧ Executable(s′), where Executable(s) is
defined as ∀a′, s′. do(a′, s′) ⊑ s ⊃ Poss(a′, s′). s ≤ s′ is an
abbreviation of s < s′ ∨ s = s′.

In the SC, a dynamic domain is specified using a basic
action theory (BAT) D that includes: (i) initial state ax-
ioms DS0

; (ii) action precondition axioms Dap characteriz-
ing Poss(a, s); (iii) successor-state axioms Dss indicating
precisely when the fluents change; (iv) unique-names axioms
Duna for actions; and (v) foundational axioms Σ, describing
the structure of situations [Levesque et al., 1998].

A key feature of BATs is the existence of a sound and com-
plete regression mechanism for answering queries about situ-
ations resulting from performing a sequence of actions [Pirri
and Reiter, 1999; Reiter, 2001]. In a nutshell, the regres-
sion operator R∗ reduces a formula ϕ about a particular fu-
ture situation to an equivalent formula R∗[ϕ] about the initial
situation S0. A formula ϕ is regressable if and only if (i)
all situation terms in it are of the form do([a1, . . . , an], S0),
(ii) in every atom of the form Poss(a, σ), the action func-
tion is specified, i.e., a is of the form A(t1, . . . , tn), (iii) it
does not quantify over situations, and (iv) it does not con-
tain ⊏ or equality over situation terms. Thus in essence, a
formula is regressable if it does not contain situation vari-
ables. In Section 4, we will define a one-step variant of
R∗, denoted using Rext . R∗ can then be defined as the re-
peated application of Rext until further applications leave
the formula unchanged. Another key result about BATs
is the relative satisfiability theorem [Pirri and Reiter, 1999;
Reiter, 2001]: D is satisfiable if and only if DS0

∪ Duna is
satisfiable (the latter being a purely first-order theory).

We will use uppercase Greek letters Φ,Ψ, etc. for situation-
suppressed SC formulae, which are defined as follows:

Φ ::= P (x⃗) | ¬Φ | Φ ∧Ψ | ∃x. Φ,

where x⃗ and x are object terms. Also, we will use α and σ,
possibly with decorations, to represent ground action and sit-
uation terms, respectively. Finally, we use uppercase Latin
letters for ground terms, lowercase Latin letters for variables.
Nondeterministic Situation Calculus (NDSC). An impor-
tant limitation of the standard SC is that atomic actions are de-
terministic. De Giacomo and Lespérance [2021] (DL21) pro-
posed a simple extension of the framework to handle nonde-
terministic actions while preserving the solution to the frame
problem. For any primitive action by the agent in a nonde-
terministic domain, there can be a number of different out-
comes. (DL21) takes the outcome as being determined by
the agent’s action and the environment’s reaction to this ac-
tion. This is modeled by having every action type/function
A(x⃗, e) take an additional environment reaction parameter e,
ranging over a new sort Reaction of environment reactions.
The agent cannot control the environment reaction, so it per-

forms the reaction-suppressed version of the action A(x⃗) and
the environment then selects a reaction e to produce the com-
plete action A(x⃗, e). The reaction-suppressed version of the
action A(x⃗) is called an agent action and the full version of
the action A(x⃗, e) is called a system action.

We represent nondeterministic domains using action the-
ories called Nondeterministic Basic Action Theories (ND-
BATs), which can be seen as a special kind of BAT, where
(1) every agent action takes an environment reaction param-
eter; (2) for each agent action we have an agent action pre-
condition formula, Possag(a(x⃗), s)

.
= ϕagPoss

a (x⃗, s); (3) for
each agent action we have a reaction independence require-
ment, stating that the precondition for the agent action is inde-
pendent of any environment reaction ∀e. Poss(a(x⃗, e), s) ⊃
Possag(a(x⃗), s); (4) for each agent action we also have a
reaction existence requirement, stating that if the precondi-
tion of the agent action holds then there exists a reaction
to it which makes the complete system action executable,
i.e., the environment cannot prevent the agent from per-
forming an action when its agent action precondition holds
Possag(a(x⃗), s) ⊃ ∃e. Possag(a(x⃗, e), s). The above re-
quirements must be entailed by an NDBAT.

An NDBAT D is the union of the following disjoint sets:
including (1) foundational axioms, (2) unique-names axioms
for actions, (3) axioms describing the initial situation, (4)
successor-state axioms (SSA) indicating how fluents change
after system actions, and (5) system action precondition
axioms, indicating when system actions can occur; while
these axioms generally follow the form: Poss(a(x⃗, e), s) ≡
ϕPoss
a (x⃗, e, s), in practice, these axioms often take the form:

Poss(a(x⃗, e), s) ≡ Possag(a(x⃗), s) ∧ φPoss(x⃗, e, s), where
Possag(a(x⃗), s) denotes conditions necessary for the agent
action a(x⃗) to occur and ϕPoss

a (x⃗, e, s) captures additional
conditions influenced by the environment’s response.

In the NDSC, executing an agent action in a situation may
result in different situations and outcomes depending on the
environment reaction. To capture this, (DL21) introduced
the defined predicate Doag (⃗a, s, s′), meaning that the system
may reach situation s′ when the agent executes the sequence
of agent actions a⃗ starting in situation s for some environment
reactions. A condition Φ may possibly hold after some exe-
cutions of a sequence of agent actions a⃗ starting in situation
s, denoted by PAfter (⃗a, Φ, s), or it may certainly hold after
all executions of a⃗ in s, denoted by CAfter (⃗a,Φ, s). Simi-
larly, (DL21) define notions of a⃗ being possibly/certainly ex-
ecutable. See [De Giacomo and Lespérance, 2021] for de-
tails.

3 Knowledge in the SC and NDSC
We now extend the framework of NDSC to accommodate
knowledge and sensing. For simplicity, in both determinis-
tic SC and NDSC, we assume the existence of two categories
of primitive actions: ordinary/non-knowledge-producing ac-
tions and binary sensing/knowledge producing actions.
Formalizing Knowledge in SC. Following [Moore, 1985;
Scherl and Levesque, 2003], we model knowledge using a
possible worlds account adapted to the SC. There can now be
multiple initial situations. Init(s) means that s is an initial



situation. The actual initial state is denoted by S0. K(s′, s)
is used to denote that in situation s, the agent thinks that she
could be in situation s′. Using K, the knowledge of an agent
is defined as:1 Know(Φ, s)

.
= ∀s′. K(s′, s) ⊃ Φ[s′], i.e. the

agent knows Φ in s if Φ holds in all of herK-accessible situa-
tions in s. We also use the abbreviations KWhether(Φ, s)

.
=

Know(Φ, s) ∨ Know(¬Φ, s), i.e., the agent knows whether
Φ holds in s and KRef (θ, s)

.
= ∃t. Know(θ = t, s), i.e., she

knows who/what θ refers to. K is constrained to be reflexive
and Euclidean (and thus transitive) in the initial situation to
capture the fact that the agent’s knowledge is true, and that
she has positive and negative introspection.

The dynamics of knowledge is specified by a SSA for
K that supports knowledge expansion as a result of sensing
actions. The information provided by a binary sensing ac-
tion is specified using the predicate SF (a, s); e.g., we might
have SF (senseonTable(b), s) ≡ onTable(b, s), i.e., the ac-
tion senseontable(b) will tell the agent whether the block b is
on the table in the situation where it is performed. SF is spec-
ified to be uniformly true for non-sensing actions. [Scherl and
Levesque, 2003] specifies the SSA for K as follows:2

K(s′, do(A(x⃗), s)) ≡ ∃s′′. s′ = do(A(x⃗), s′′) ∧K(s′′, s) ∧
Poss(A(x⃗), s′′) ∧ [SF (A(x⃗), s) ≡ SF (A(x⃗), s′′)].

Thus, after an action happens, the agent learns that it was ex-
ecutable and it has happened. Moreover, if the action is a bi-
nary sensing action, the agent acquires knowledge of the asso-
ciated proposition. As shown in [Scherl and Levesque, 2003],
the constraints on K then continue to hold after any sequence
of actions since they are preserved by the SSA for K. Scherl
and Levesque [Scherl and Levesque, 2003] also showed how
one can define regression for knowledge-producing actions.

Thus to model knowledge, one uses a theory that is similar
to before, but with modified foundational axioms to allow for
multiple initial epistemic states. Also, action preconditions
can now include knowledge preconditions and initial state ax-
ioms can now include axioms describing the epistemic states
of the agents. Finally, the aforementioned axioms for K are
included. See [Reiter, 2001] for details.
Accommodating Nondeterminism. In deterministic do-
mains, an agent’s knowledge evolves predictably based on
her actions. In contrast, in the NDSC, the agent must rea-
son not only about the actions she performed but also about
how the environment might react to those actions, reactions
that she does not observe. For simplicity here, we will as-
sume that the (binary) sensing actions A(x⃗) are deterministic
(unlike the ordinary actions), and thus are coupled with a con-
stant success reaction Suc to produce the associated system
actions A(x⃗, Suc).

The key to modeling knowledge in such a setting is the
SSA for the knowledge fluent K, which specifies how the
agent’s knowledge evolves after performing an action. We

1Φ can contain a placeholder now in the place of the situation
terms. Also, Φ[s] denotes the formula obtained by restoring the sit-
uation argument s into all fluents in Φ.

2For simplicity, in this paper we deal with binary sensing actions
exclusively, and thus we use the SF fluent [Levesque, 1996]. We
could have generalized this easily.

modify it as follows to account for the fact that the agent does
not observe the environment reaction:
K(s′, do(A(x⃗, e), s)) ≡ ∃s′′, e′. s′ = do(A(x⃗, e′), s′′) ∧K(s′′, s)
∧ Poss(A(x⃗, e′), s′′) ∧ [SF (A(x⃗, e′), s) ≡ SF (A(x⃗, e′), s′′)].

Thus after A(x⃗, e) happens, the agent learns that for some
environment reaction e′, A(x⃗, e′), which was executable, has
happened, and just like the deterministic case, if the action
is a binary sensing action, the agent acquires knowledge of
the associated proposition. This thus models that if there are
more than one possible reactions for A(x⃗), the agent will not
know the actual environment reaction.

[Scherl and Levesque, 2003] proved some properties
to show that their axiomatization ensures that knowledge
changes as appropriate. Let us examine which of these prop-
erties still hold unchanged for our axiomatization of knowl-
edge in the NDSC, and which hold in a modified form. First,
we still have that knowledge-producing actions do not change
the state of the world, and the only fluent whose truth value is
altered by a knowledge-producing action is K:
Theorem 1 (Knowledge-Producing Effects - Theorem 1 in
[Scherl and Levesque, 2003]). For all situations s, all fluents
P (other than K) and knowledge-producing system action
terms α, if P (s) then P (do(α, s)).
This follows from the requirement that knowledge-producing
actions do not affect fluents other that K.

Secondly, we still have that agents know the consequences
of knowledge acquired through knowledge-producing ac-
tions:
Theorem 2 (Knowledge Incorporation - Theorem 3 in [Scherl
and Levesque, 2003]). For a knowledge-producing system
action α, a fluent or the negation of a fluent F , a fluent or the
negation of a fluent P , and a situation s, if the axiomatiza-
tion entails that Know(F ≡ SF (α), s), F (s), Poss(α, s),
and Know(F ⊃ P, s) hold, then Know(P, do(α, s)) holds
as well.

We also have the following result showing that ignorance
persist unless the agent knows that the action affects the fluent
in question or produces knowledge about it:
Theorem 3 (Default Persistence of Ignorance).
For a system action a(x⃗, e) and a situation s, if
¬Know(P, s) holds and the axiomatization entails that
∀e′, s.Poss(a(x⃗, e′), s) ⊃ (P (do(a(x⃗, e′), s)) ≡ P (s)) and
¬Know(∀e′.[(Poss(a(x⃗, e′)) ∧ SF (a(x⃗, e′))) ⊃ P ], s),
then ¬Know(P, do(a(x⃗, e), s)) holds as well.
This is a modification of Theorem 2 in [Scherl and Levesque,
2003], where we take into account the fact that the agent does
not observe the environment reaction.

[Scherl and Levesque, 2003] show (their Theorem 4) that
in the deterministic SC, agents never forget, i.e., if an agent
knows P in situation s, then P remains known in do(a, s),
provided that the action a does not make P false. This prop-
erty no longer holds in non-deterministic domains. Instead,
we have that:
Theorem 4 (Memory). For all fluents P and situations s, if
Know(P, s) holds, then Know(P, do(a(x⃗, e), s)) holds as
long as the axiomatization entails that
∀e′, s. Poss(a(x⃗, e′), s) ⊃ (P (do(a(x⃗, e′), s)) ≡ P (s)).



That is, the knowledge of P persists as long as P persists after
the agent action for all possible reactions.

[Scherl and Levesque, 2003] also show (their Theorem 5)
that in the deterministic SC, agents know the effects of or-
dinary actions. Instead, we have that this holds for certain
effects of the action (i.e., effects that hold no matter what the
environment reaction is):
Theorem 5 (Knowledge of Certain Effects of Actions). If
a(x⃗, e) is an ordinary action (not a knowledge-producing
action) and if the axiomatization entails that ∀e′, s.ϕ[s] ∧
Poss(a(x⃗, e′), s) ⊃ P (do(a(x⃗, e′), s)), where ϕ is an ar-
bitrary formula with situation terms suppressed and P is a
fluent or its negation, then the following is also entailed:

Know((ϕ ∧ Possag(a(x⃗)), s) ⊃ Know(P, do(a(x⃗, e), s)).

Finally, we prove a property that shows that in the NDSC,
the agent’s knowledge in situation do(α(e), s) can be reduced
to the agent’s knowledge in s. This will serve as a basis of our
proposed extended knowledge-regression operator.
Proposition 1. Let D be an NDBAT, α(x⃗) be a ground
agent action term, φ be a situation-suppressed SC formula.
Then we have the following. When α(x⃗) is a regular (non-
knowledge-producing) agent action:

D |= Know(φ, do(α(x⃗, e′), s)) ≡
Know(∀e. Poss(α(x⃗, e)) ⊃ φ[do(α(x⃗, e))], s).

When α(x⃗) is a knowledge producing agent action with
sensed-fluent axiom SF (α(x⃗, e), s) ≡ ψ[s]:

D |= Know(φ, do(α(x⃗, e), s)) ≡
(ψ[s] ⊃ Know(ψ ∧ Poss(α(x⃗, e)) ⊃ φ[do(α(x⃗, e))], s)) ∧
(¬ψ[s] ⊃ Know(¬ψ ∧ Poss(α(x⃗, e)) ⊃ φ[do(α(x⃗, e))], s)).

The proofs of Theorems 3, 4, and 5 are similar to that of the
corresponding results in [Scherl and Levesque, 2003]. Propo-
sition 1 can be proved easily by applying the definition of
Know and using the successor-state axiom for K.
Example. Consider a robot navigating between locations and
communicating. The robot communicates only if the loca-
tion is not risky and it hasn’t become vulnerable. The robot
moves between connected locations (agent action move(i, j))
and communicates from the current location (agent action
comm(i)). Moving to a risky location may make the robot
vulnerable, represented by the system action move(i, j, e)
where e can be either Vul (vulnerable) or NotVul (not vul-
nerable). The communication action has a single successful
outcome, represented by the system action comm(i, e) where
e = Suc. The precondition axioms for these are as follows:

(1) Possag(move(i, j), s) ≡ At(i, s) ∧ Connected(i, j),

(2) Possag(comm(i), s) ≡ ¬Vul(s) ∧ ¬Risky(i, s),
(1′) Poss(move(i, j, e), s) ≡ Possag(move(i, j), s)

∧ (Risky(j, s) ⊃ (e = Vul ∨ e = NotVul))

∧ (¬Risky(j, s) ⊃ e = NotVul),

(2′) Poss(comm(i, e), s) ≡ Possag(comm(i), s) ∧ e = Suc.

The fluents in this example are Vul(s), which denotes that the
robot is vulnerable in situation s, At(i, s), which states that
the robot is at location i in s, and Risky(i, s), which indicates

that location i is risky in s. Certain locations are risky initially
and they remain the only risky ones as actions are performed.
Additionally, there is a non-fluent Connected(i, j) indicating
a path from location i to j.

The SSA for these fluents are as follows:

(3) At(j, do(a, s)) ≡ ∃i, e. a = move(i, j, e)

∨ (At(j, s) ∧ ∀j′, e′. ¬(a = move(j, j′, e′))),

(4) Vul(do(a, s)) ≡ ∃i, j. a = move(i, j,Vul) ∨Vul(s),

(5) Risky(i, do(a, s)) ≡ Risky(i, s).

We also have the following initial state axioms:

(6) ¬Vul(S0), (7) At(I0, S0), (8) Risky(i, S0) ≡ i = I2.

There are four locations I0 to I3 in this domain, and
the interconnections between these are given by the
Connected(i, j) predicate, where (i, j) are the pairs
(I0, I1), (I1, I0), (I1, I2), (I2, I1), (I2, I3), and (I3, I2). We
will refer to this NDBAT as D1.

We assume the following initial knowledge:

(9) Know(At(I0), S0), (10) Know(¬Vul , S0),

(11) ¬KWhether(Risky(I1), S0),

(12) ¬KWhether(Risky(I2), S0),

(13) Know((Risky(I1) ∧ ¬Risky(I2))
∨ (¬Risky(I1) ∧ Risky(I2)), S0).

Initially, there are two possible worlds related to S0: S0,
where the robot is at location I0, is not vulnerable, and I2
only is risky, and S1

0 , where the robot is at location I0, is not
vulnerable, and I1 only is risky. We also have sensing actions
senseR(j, e) and senseV (e), and the following sensed-fluent
axioms: senseR(j, e) senses whether location j is Risky :

(14) ∀s, j. SF (senseR(j,Suc), s) ≡ Risky(j, s),

senseV (e) senses whether the robot has become vulnerable:

(15) ∀s. SF (senseV (Suc), s) ≡ Vul(s).

Let DK
1 denote this axiomatization with knowledge. In this

domain, we can show the following results:
Proposition 2.

Dk
1 |= ¬KWhether(Vul , do(move((I0, I1), e), S0)),

Dk
1 |= Know(Vul ⊃ Risky(I1) ∧ ¬Risky(I2),

do([move((I0, I1), e), senseV (Suc)], S0)).

4 Reasoning About Causal Knowledge
Causal Knowledge in the SC. Actual causation is the prob-
lem of identifying the relevant actions within a given his-
tory of events (known as the scenario), those that were re-
sponsible for causing an observed effect. When the effect is
assumed to be initially false, this problem is referred to as
achievement causation. Building on Batusov and Soutchan-
ski’s [2018] definition of actual causes, Khan and Lespérance
[2021] (KL21, henceforth) recently formalized causal knowl-
edge in the (deterministic) SC. Both proposals constrain sce-
narios to be linear sequences of actions. (KL21)’s account
can handle causes of epistemic effects, allowing an agent to
incorporate knowledge-preconditions of actions and reason



about the causes of newly acquired knowledge. They showed
that an agent may be uncertain about a cause, but might know
it after performing some knowledge-producing actions.

To formalize reasoning about causal knowledge, (KL21)
introduced the concept of an epistemic dynamic formula.
Definition 1. Let x⃗, θa, and y⃗ range over object terms, system
actions, and object/system action variables, respectively. The
class of situation-suppressed epistemic dynamic formulae φ
is defined by: φ ::= P (x⃗) | Poss(θa) | After(θa, φ) | ¬φ |
φ1 ∧ φ2 | ∃y⃗. φ | Know(φ).

Given an epistemic dynamic formula φ, actual causes of
φ are defined relative to a causal setting ⟨D, s, φ⟩, where
D is a BAT and s is the scenario. Since we are dealing
with achievement causality exclusively, it is also assumed that
D |= Executable(s) ∧ ¬φ[S0] ∧ φ[s]. Here φ[s] denotes the
formula obtained from φ by restoring the appropriate situa-
tion argument into all fluents in φ. Formally:
Definition 2.

φ[s]
.
=



P (x⃗, s) if φ is P (x⃗)

Poss(θa, s) if φ is Poss(θa)
ψ′[do(θa, s)] if φ is After(θa, ψ

′)

¬(φ′[s]) if φ is (¬φ′)

φ1[s] ∧ φ2[s] if ψ is (φ1 ∧ φ2)

∃y⃗. (φ′[s]) if φ is (∃y⃗. φ′)

∀s′. K(s′, s) ⊃ (φ′[s′]) if φ is Know(φ′)

Since all changes in the SC are result of actions, the potential
causes of an effect φ are identified with the set of action terms
occurring in a situation s. However, since smay contain mul-
tiple instances of the same action, it is necessary to uniquely
identify where these actions were performed. To address this,
(KL21) required that each situation be associated with an in-
teger timestamp, formalized using the following axioms:
time(S0) = 0,
∀a, s, ts.time(do(a, s)) = ts ≡ time(s) = ts− 1.
Causes are then a set of action-timestamp pairs.

Following [Batusov and Soutchanski, 2018], (KL21) de-
fine both primary and indirect notions of causes. Given an
effect φ and scenario s, if some action of the action sequence
in s triggers the formula φ to change from false to true rela-
tive to D, and if there are no actions in s after it that change φ
back to false, then this action is an actual cause of achieving
φ in s. Such causes are referred to as primary causes:
Definition 3 (Primary Cause (KL21)).

CausesDirectly(a, ts, φ, s)
.
=

∃sa. time(sa) = ts ∧ (S0 < do(a, sa) ≤ s) ∧
¬φ[sa] ∧ ∀s′.(do(a, sa) ≤ s′ ≤ s ⊃ φ[s′]).

That is, a executed at timestamp ts is the primary cause of
effect φ in situation s iff a was executed in a situation with
timestamp ts in scenario s, a caused φ to change to true, and
no subsequent actions on the way to s falsified φ.

Now, note that a (primary) cause a might have been non-
executable initially. Also, a might have only brought about
the effect conditionally and this context condition might have
been false initially. Thus earlier actions in the trace that con-
tributed to the preconditions and the context conditions of a

cause must be considered as causes as well. The following
definition captures both primary and indirect causes:3

Definition 4 (Actual Cause (KL21)).
Causes(a, ts, φ, s)

.
=

∀P.[∀a, ts, s, φ.(CausesDirectly(a, ts, φ, s) ⊃ P (a, ts, φ, s))

∧ ∀a, ts, s, φ.(∃a′, ts′, s′.(CausesDirectly(a′, ts′, φ, s)

∧ time(s′)= ts′ ∧ s′ < s

∧ P (a, ts, [Poss(a′) ∧After(a′, φ)], s′)

⊃ P (a, ts, φ, s))

] ⊃ P (a, ts, φ, s).

Thus, Causes is defined to be the least relation P such that
if a executed at timestamp ts directly causes φ in scenario
s then (a, ts, φ, s) is in P , and if a′ executed at ts′ is a di-
rect cause of φ in s, the timestamp of s′ is ts′, s′ < s, and
(a, ts, [Poss(a′) ∧ After(a′, φ)], s′) is in P (i.e. a executed
at ts is a direct or indirect cause of [Poss(a′)∧After(a′, φ)]
in s′), then (a, ts, φ, s) is in P . Here the effect [Poss(a′) ∧
After(a′, φ)] is that a′ be executable and φ hold after a′.
Example (cont’d). Consider the (system) action se-
quence σ1 and effect φ1, where σ1 = do([comm(I0,
Suc), move(I0, I1,NotVul), move(I1, I2,Vul), move(I2,
I3,NotVul)], S0) and φ1 = Vul . This is depicted in the left
branch of the right tree in Figure 1. We can show that:
Proposition 3 (Causes of φ1 in σ1).

D1 |= ¬Causes(comm(I0,Suc), 0, φ1, σ1)

∧ Causes(move(I0, I1,NotVul), 1, φ1, σ1)

∧ Causes(move(I1, I2,Vul), 2, φ1, σ1)

∧ ¬Causes(move(I2, I3,NotVul), 3, φ1, σ1).

Thus, e.g., move(I1, I2,Vul) executed at 2 is a cause since it
directly caused the effect. Moreover, move(I0, I1,NotVul)
executed at 1 can be shown to be an indirect cause of φ1.
This is because by axioms (1) and (1′) the primary cause of
moving from location I1 to I2 i.e. move(I1, I2,Vul) is only
possible when the robot is at I1, which in this scenario was
brought about by move(I0, I1,NotVul).

With this definition of Causes(a, t, ψ, s), (KL21) showed
that one can use it just like any other formula in the context
of Know . One can state that an agent knows in some situ-
ation s that a executed at time t is a cause of an effect ψ,
i.e. Know(Causes(a, t, ψ, now), s), which by definition of
knowledge means that ∀s′. K(s′, s) ⊃ Causes(a, t, ψ, s′),
i.e. in all her epistemic alternatives s′, a at t is a cause of ψ.

Recently, [Khan et al., 2025] showed that Causes in
do(a, s) can be reduced to a formula that only mentions
Causes in s:
Proposition 4 (Proposition 3 in [Khan et al., 2025]).
D |= Causes(b, t, φ, do(a, s)) ≡
(time(s) = t ∧ b = a ∧ ¬φ[s] ∧ φ[do(a, s)]) ∨
(time(s) > t ∧ φ[s] ∧ φ[do(a, s)] ∧ Causes(b, t, φ, s)) ∨
(time(s) > t ∧ ¬φ[s] ∧ φ[do(a, s)]

∧ Causes(b, t,Poss(a) ∧After(a, φ), s)).
3In this, we need to quantify over situation-suppressed epistemic

dynamic formulae. Thus we must encode such formulae as terms
and formalize their relationship to the associated SC formulae. This
is tedious but can be done essentially along the lines of [De Giacomo
et al., 2000]. We assume that we have such an encoding and use
formulae as terms directly.
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Figure 1: Executions of the agent actions associated with σ1.

Causal Knowledge in the NDSC. Exploiting our formaliza-
tion of knowledge for the NDSC from Sec. 3, we can reason
about how the agent’s causal knowledge changes when her
knowledge is updated.
Example (cont’d). Consider the robot’s causal knowl-
edge in σ1. Recall that the robot is unsure about the
initial situation and cannot see the environment reactions
to her actions; thus she must consider all possible execu-
tions of the agent action sequence associated with the sce-
nario σ1 starting in the initial situations that she consid-
ers possible when dealing with causal knowledge. Figure
1 shows these executions of this agent action sequence, i.e.
[comm(I0), move(I0, I1), move(I1, I2), move(I2, I3)],
starting in K-alternate initial situations S0, where loca-
tion I2 is risky, and S1

0 , where I1 is risky. Here,
the superscripts v and nv represent environment choices
Vul and NotVul , respectively, and v/¬v indicates whether
the agent has become vulnerable or not. Thus, e.g.,
in this tree s1 = do(comm(I0,Suc), S0) and snv2 =
do(move(I0, I1,NotVul), s1), etc. The actual situations and
execution is shown in red, and the blue dashed-line shows the
(partial) K-accessibility relation. Finally, snv42 = σ1.

We can show that:
Proposition 5 (Causal Knowledge in σ1).
DK

1 |= Know(¬∃e.Causes(comm(I0, e), 0, φ1), σ1)

∧Know(¬φ1 ∨ ∃e.Causes(move(I0, I1, e), 1, φ1), σ1)

∧ ¬KWhether(∃e.Causes(move(I1, I2, e), 2, φ1), σ1)

∧Know(¬∃e.Causes(move(I2, I3, e), 3, φ1), σ1).

Thus, line 1 and 4 above says that the robot knows that comm
and the last move actions are not causes of φ1 = Vul since
these do not involve moving to a risky location; line 2, that
the robot knows that either she has not become vulnerable, or
for some environment reaction e, the first move action (either
directly, as in the case when e = Vul , or indirectly, when e =
NotVul ) caused φ1 (note that it can be shown that the robot
does not know if she has become vulnerable in σ1); and line
3, that she does not know whether the second move action
is a cause, as even in the case where she became vulnerable,
it might have been the first move action that caused it (e.g.
as in the case for snv44 ). Again, since the robot cannot see the
environment reactions and does not know which of S0 and S1

0

is the actual initial situation, as far as she is concerned, after
executing this agent action sequence, she might be in any of
the situations snv41 , snv42 (which is σ1), snv43 , or snv44 ; see Fig. 1.

Moreover, we can show that in addition to the above
knowledge, the robot will learn that moving from I0 to I1
is indeed a cause of Vul after sensing Vul in σ1, i.e. in
σ2 = do(senseV (Suc), σ1):
Proposition 6 (Causal Knowledge in σ2 (Partial)).

DK
1 |= Know(∃e.Causes(move(I0, I1, e), 1, φ1), σ2).

This is because after sensing for Vul , she will drop all situa-
tions fromK where Vul does not hold, and will thus have s54
and σ2 in K, in each of which the second move is a cause.

Finally, after sensing whether location I2 is risky, she will
also know the following in σ3 = do(senseR(I2 ,Suc), σ2):
Proposition 7 (Causal Knowledge in σ3 (Partial)).

DK
1 |= Know(Causes(move(I0, I1,NotVul), 1, φ1), σ3)

∧Know(Causes(move(I1, I2,Vul), 2, φ1), σ3).

To see this, note that since the robot initially knew that ei-
ther I0 or I1 but not both is risky (by Axiom (13)), knows
that (non)risky locations remain (non)risky (by Axiom (5)),
and just learned that I2 is risky, she will also know that I1
is not risky. Consequently, σ3 is the only K-accessible sit-
uation in σ3. The result follows from this and the fact that
move(I0, I1,NotVul) and move(I1, I2,Vul) are the only
causes of φ1 in σ3 (similar to in Proposition 3).
Extending Regression for Reasoning About Causal
Knowledge in the NDSC. We start by extending the set of
regressable formulae to include Causes(b, t, φ, do(a, s)) and
Know(ϕ, do(a, s)), with the same restrictions on their argu-
ments as imposed in the original definition of regressable for-
mula [Scherl and Levesque, 2003]. We also extend R to de-
fine regression of these additional constructs. We denote this
one-step extended regression operator using Rext. As usual,
we use R∗

ext to denote the repeated application of Rext until
further applications leave the argument formula unchanged.
Definition 5 (The Extended Regression Operator Rext).
(1) When ϕ is a non-fluent atom, including equality atoms
without functional fluents as arguments, or when ϕ is a fluent
atom, whose situation argument is S0, Rext[ϕ] = ϕ.
(2a) For a non-functional fluent F , whose successor-
state axiom in D is F (x⃗, do(a, s)) ≡ ΦF (x⃗, a, s),
Rext[F (⃗t, do(α, σ))] = ΦF (⃗t, α, σ).
(2b) For an equality literal with a functional fluent f , whose
successor-state axiom is f(x⃗, do(a, s)) = y ≡ Φf (x⃗, y, a, s),

Rext[f (⃗t, do(α, σ)) = t′] = Φf (⃗t, t
′, α, σ).

(2c) For a Poss literal with the action precondi-
tion axiom of the form Poss(A(x⃗), s) ≡ ΠA(x⃗, s),
Rext[Poss(A(⃗t), σ)] ≡ Rext[ΠA(⃗t, σ)].
(3) For any non-atomic formulae, regression is defined
inductively: Rext[¬ϕ] = ¬Rext[ϕ], Rext[ϕ1 ∧ ϕ2] =
Rext[ϕ1] ∧Rext[ϕ2], Rext[∃v. ϕ] = ∃v. Rext[ϕ].
(4) If ϕ is an extended regressable formula of the form
Causes(b, t, φ, do(a, s)), then:
Rext[Causes(b, t, φ, do(a, s))] =
(time(s) = t ∧ b = a ∧ ¬φ[s] ∧Rext[φ[do(a, s)]]) ∨
(time(s) > t ∧ φ[s] ∧Rext[φ[do(a, s)]] ∧ Causes(b, t, φ, s)) ∨
(time(s) > t ∧ ¬φ[s] ∧Rext[φ[do(a, s)]]∧

Causes(b, t,Poss(a) ∧Rext[φ[do(a, s
′)]]−1, s)).



(5a) The regression of the Know operator when α(x⃗)
is not a knowledge producing action:

Rext[Know(ϕ, do(α(x⃗, e′), s))] =
Know(∀e.Poss(α(x⃗, e)) ⊃ Rext[ϕ[do(α(x⃗, e), s

′)]]−1, s).

(5b) The regression of the Know operator when α(x⃗)
is a knowledge producing action with sensed-fluent axiom
SF (α(x⃗, e), s) ≡ ψ[s]:

Rext[Know(ϕ, do(α(x⃗, Suc), s))] =
(ψ[s] ∧Know(ψ ∧ Poss(α(x⃗, Suc)) ⊃

Rext[ϕ[do(α(x⃗, Suc), s
′)]]−1, s)) ∧

(¬ψ[s] ∧Know(¬ψ ∧ Poss(α(x⃗, Suc)) ⊃
Rext[ϕ[do(α(x⃗, Suc), s

′)]]−1, s))

Cases 4 and 5 can be justified directly using Propositions
4 and 1 above. Intuitively, these reduce causes in scenario
do(a, s) to that in scenario s via reasoning by cases and using
the definition of causes and regression;4 and reduce knowl-
edge in do(α(x⃗, e), s) to that in s.

With this definition in hand, we now present our key result.
Theorem 6. If ϕ is an extended regressable formula and D
is an NDBAT, then D |= ϕ iff DS0

∪ Duna |= R∗
ext[ϕ].

The proof is similar to that of the knowledge regression theo-
rem in [Scherl and Levesque, 2003], but uses Prop. 1 and 4.
Example (cont’d). Let σ∗ = do([move(I0, I1,NotVul),
move(I1, I2,Vul)], S0). Note that:

DK
1 |= Know(¬φ1∨∃e.Causes(move(I0, I1, e), 0, φ1)), σ

∗).

We can show the following:
Proposition 8 (Example: Regression of Causal Knowledge).

Rext [Know(¬φ1 ∨ ∃e.Causes(move(I0, I1, e), 0, φ1)), σ
∗)] =

Know(∀e′. Poss(move(I1, I2, e
′)) ⊃ ψ∗, σ∗∗),

where, σ∗∗ = do(move(I0, I1,NotVul), S0)

and, ψ∗ = ¬(e′ = Vul ∨Vul) ∨
∃e.[[time > 0 ∧Vul ∧ Causes(move(I0, I1, e), 0,Vul)] ∨

[time > 0 ∧ ¬Vul ∧ e′ = Vul

∧ Causes(move(I0, I1, e), 0,

Poss(move(I1, I2, e
′)) ∧ (e′ = Vul ∨Vul))].

Thus the robot’s knowledge in σ∗ that ¬φ1 ∨
∃e.Causes(move(I0, I1, e), 0, φ1) can be reduced to
her knowledge in the previous situation σ∗∗ that for all envi-
ronment reactions e′ for which the agent action move(I1, I2)
is possible, ψ∗ holds, where the latter means that either
e′ is NotVul and she is not currently vulnerable; or she
is vulnerable, and move(I0, I1) (directly) caused Vul for
some e; or she is not vulnerable, e′ is Vul , and for some

4Note that the formulae inside the context of Causes and Know
are situation-suppressed. On the other hand, the regression operator
Rext requires a situation argument. To deal with this, here we in-
troduce a new situation variable s′ and use the φ−1 operator from
[Scherl and Levesque, 2003] that suppresses the situation argument
of φ by removing the last (situation) argument of all the fluents in φ.
Thus, e.g., Rext [φ[do(α(x⃗, e), s

′)]]−1 introduces the situation term
do(α(x⃗, e), s′) to the situation suppressed formula φ, performs the
regression, and then suppresses the situation argument in the result.

e, move(I0, I1) caused move(I1, I2, e
′) to be possible and

make Vul hold afterwards.
Repeated applications of Rext yields a formula containing

knowledge about S0 that can be checked against the initial
state axioms and Duna in DK

1 .

5 Conclusion
Motivated by the utility of actual causality in multiagent sys-
tems and the nondeterministic nature of real world action
and change, in this paper we studied reasoning about causal
knowledge in the NDSC [De Giacomo and Lespérance,
2021]. We first adapted [Scherl and Levesque, 2003] to ob-
tain a formalization of knowledge change and sensing in the
NDSC. We then combined this with a previously proposed
definition of causal knowledge in the deterministic SC [Khan
and Lespérance, 2021] to obtain a formalization of causal
knowledge in the NDSC. Finally, we also defined a regres-
sion operator in the NDSC to reason about causal knowledge.

Recently, Khan, Lespérance, and Rostamigiv [2025] stud-
ied actual causality in the non-epistemic NDSC. As well as
system actions as causes, they considered agent actions as
causes and showed that one can define two different no-
tions of causes for the latter, “certainly causes” and “possibly
causes”. But unlike us they did not study knowledge update
in the NDSC or investigate causal knowledge dynamics.

To the best of our knowledge, our formalization is the
first to deal with causal knowledge in nondeterministic do-
mains. The only other account of causal knowledge be-
sides [Khan and Lespérance, 2021] that we are aware of is
the one proposed by Chockler et al. [2015], who formalized
causal knowledge while defining responsibility/blame in le-
gal cases. In that framework, an agent’s uncertainty of the
causal setting is modeled using an “epistemic state”, which
is a pair (K,Pr), where K is a set of causal settings and
Pr is a probability distribution over K. The proposal is
based on structural equations [Simon, 1977], and thus has
limited expressiveness [Glymour et al., 2010; Hopkins, 2005;
Hopkins and Pearl, 2007]. Also, unlike us, they take events to
be deterministic. In contrast, our framework is more expres-
sive (first-order) and incorporates a formal model of domain
dynamics and knowledge change. This allows for an inter-
esting interplay between causality and knowledge. In addi-
tion, we incorporate nondeterminism and formalize reasoning
about causal knowledge.

In this work, we focused on knowledge and not belief.
The relation between actual causes, nondeterminism, and
causal knowledge becomes more intricate if we incorporate
the latter. Dealing with this is future work. Finally, in the
future we would like to investigate reasoning that involves
concurrent actions by multiple agents [De Giacomo et al.,
2016] and define responsibility and blame using our formal-
ization [Yazdanpanah et al., 2019; Naumov and Tao, 2020;
Parker et al., 2023].
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