
TOWARDS ROOT CAUSE ANALYSIS IN HYBRID

DYNAMIC DOMAINS

A Thesis

Submitted to the Faculty of Graduate Studies and Research

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

University of Regina

By

Asim Mehmood

Regina, Saskatchewan

January 2025

Copytright © 2025: A. Mehmood

UNIVERSITY OF REGINA

FACULTY OF GRADUATE STUDIES AND RESEARCH

SUPERVISORY AND EXAMINING COMMITTEE

Asim Mehmood, candidate for the degree of Master of Science in Computer Science, has
presented a thesis titled, Towards root cause analysis in hybrid dynamic domains, in an
oral examination held on December 12, 2024. The following committee members have found
the thesis acceptable in form and content, and that the candidate demonstrated satisfactory
knowledge of the subject material.

External Examiner: Dr. Allen Herman, Department of Mathematics and Statistics

Supervisor(s): Dr. Shakil M. Khan, Department of Computer Science

Committee Member: Dr. Sandra Zilles, Department of Computer Science

Chair of Defense: Dr. Golam Kabir, Industrial Systems Engineering

Abstract

Reasoning about actual causes of observed effects is fundamental to the study of

rationality. As such, this important problem has been studied since the time of Aris-

totle, with formal mathematical accounts emerging recently. We live in a world where

change due to actions can be both discrete and continuous, i.e., hybrid. Yet, while

there has been extensive research on actual primary and indirect causes in discrete

dynamic domains, only few recent studies address causation in such hybrid domains.

Building on recent progress, in this thesis I propose a first definition of primary cause

in a hybrid temporal action-theoretic framework. My proposal is limited to primitive

observations/effects. I also show how a variant of my definition can be interpreted

from a counterfactual perspective and hint how the account can be modified to work

with conjunctive/disjunctive effects. My proposal is set within a hybrid variant of the

situation calculus. I show that my formalization has some basic intuitive properties.

i

Acknowledgements

First and foremost, I would like to thank God for giving me the strength and

perseverance to complete this work. I extend my deepest gratitude to my supervisor,

Dr. Shakil M. Khan, for his unwavering support, insightful guidance, and continuous

encouragement. His mentorship has been invaluable. My heartfelt thanks go to my

family for their love, support, and belief in me. I also wish to acknowledge Dr. Allen

Herman for his role as the external examiner during my defense and Dr. Sandra

Zilles for serving as a committee member. Furthermore, I extend my sincere thanks

to Dr. Lisa Fan for her valuable comments on my thesis. Finally, I am thankful to

the Faculty of Graduate Studies and Research at the University of Regina for funding

my research, as well as to the Natural Sciences and Engineering Research Council of

Canada for their support through grants awarded to my exceptional supervisor.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vii

Index to Symbols and their Definitions viii

Transparency Statement x

Chapter 1 Introduction 1

1.1 Motivation and Specific Problem . 3

1.2 Contributions . 5

1.3 Thesis Organization . 6

Chapter 2 Literature Review 8

2.1 Introduction . 8

2.2 Regularity Theories of Causation . 9

2.3 Causes and INUS Conditions . 10

iii

2.4 Counterfactual Theories of Causation 11

2.5 Causal Models based on Structural-Equations-Modeling 12

2.6 Causality and Counterfactuals in the Situation Calculus 16

2.7 Bochman’s non-monotonic Account 18

2.8 Batusov and Soutchanski’s Foundational Account of Causes 19

2.9 Causal Knowledge and its Dynamics 19

2.10 Necessary and Sufficient Conditions for Actual Root Causes 20

2.11 Anil Nerode’s Hybrid Systems . 21

2.12 Causal Models with Infinitely Many Variables 22

2.13 Conclusion . 24

Chapter 3 Foundations 26

3.1 Introduction . 26

3.2 The Situation Calculus . 27

3.2.1 Introduction . 27

3.2.2 Basic Action Theory . 29

3.2.3 Reasoning in the Situation Calculus 37

3.2.4 Limitations of the Situation Calculus 39

3.3 Hybrid Temporal Situation Calculus 41

3.3.1 Introduction . 41

3.3.2 State Evolution Axioms . 44

3.3.3 Reasoning in Hybrid Temporal Situation Calculus 48

iv

3.3.4 Example . 49

3.4 Actual Cause in the Situation Calculus 54

3.4.1 Situation Calculus Semantics for Actual Causality 55

3.4.2 Embedding the Metatheoretic Account of Actual Causes by Ba-

tusov and Soutchanski into the Language of Situation Calculus 59

3.4.3 Example - Causes in Discrete Case 65

3.5 Counterfactual Worlds in Situation Calculus 67

3.5.1 Defining Counterfactual Situations 68

3.6 Conclusion . 73

Chapter 4 A Foundational Definition of Primary Achievement Cause

in Hybrid Dynamic Domains 75

4.1 Introduction . 75

4.2 Setting the Stage . 76

4.3 Primary Achievement Cause: The Primitive Case 80

4.3.1 Intuition and Definition . 80

4.4 Handling Compound Effects . 83

4.5 Properties . 86

4.6 Examples . 91

4.6.1 Example: The Primitive Temporal Case 91

4.6.2 Examples: Compound Cases 95

4.6.3 Example: Conjunctive Case 97

v

4.6.4 Example: Disjunctive Case . 99

4.6.5 Example: Implicit Primary Cause 101

4.7 Conclusion . 103

Chapter 5 Another Definition of Primary Cause:

A Counterfactual Perspective 105

5.1 Introduction . 105

5.2 Another Definition of Primary Cause 106

5.3 Defused Situation for Counterfactual Analysis 109

5.4 Examples: Counterfactual Analysis 117

5.4.1 Example 1 . 118

5.4.2 Example 2 . 120

5.4.3 Example 3 . 123

5.5 Conclusion . 125

Chapter 6 Conclusions and Future Research 127

6.1 Contributions . 127

6.2 Conclusion and Future Work . 129

References 132

vi

List of Figures

3.1 Causes in Discrete Case . 65

3.2 Single Action Counterfactual Analysis on Direct Cause 72

3.3 Single Action Counterfactual Analysis on Direct Cause 72

4.1 Primary Cause in Hybrid Domains: Primitive Case 92

4.2 Primary Cause in Hybrid Domains: Conjunctive Case 97

4.3 Primary Cause in Hybrid Domains: Disjunctive Case 99

4.4 Implicit Primary Cause . 101

5.1 Example 1. Counterfactuals in Primitive Temporal Case 118

5.2 Example 2. Figure 1/2. Counterfactuals in HTSC 120

5.3 Example 2. Figure 2/2. Counterfactuals in HTSC 121

5.4 Example 3. Figure 1/2. Counterfactuals in HTSC 123

5.5 Example 3. Figure 2/2. Counterfactuals in HTSC 124

vii

Index to Symbols and their Definitions

• S0: the initial situation . 27

• do(a, s): the situation obtained by executing action a in situation s 27

• Poss(a, s): action a is possible to execute in situation s . 28

• Executable(s): situation s is executable . 28

• D: situation calculus basic action theory . 29

• DS0 : initial state axioms . 29

• Dap: action precondition axioms . 29

• Dss: successor-state axioms . 30

• Duna: unique name axioms .30

• Σ: domain-independent foundational axioms . 30

• s ⊏ s′: s strictly precedes s′ . 36

• s ⊑ s′: s precedes s′ .36

• R∗: the regression operator . 39

• time(a): execution time of action a . 42

• start(s): the starting time of the situation s .42

• δfi : context of a temporal fluent f , indexed by i . 44

• f(x, t, s): value of a temporal fluent f at time t in situation s . 45

viii

• finit(x, s): initial value of a temporal fluent f in situation s . 46

• Dse: state evolution axioms . 47

• ⟨D, σ, φ⟩: causal setting . 55

• σ: a ground situation term or scenario . 55

• φ: a situation-suppressed situation calculus formula or query . 55

• timeStamp(s): time-stamp of a situation s . 60

• CausesDirectly(a, ts, φ, s): a at ts directly causes φ in situation s .63

• Causes(a, ts, φ, s): a executed at ts is an actual cause of φ in s .64

• CF one(s
′, s): s′ is a single-action counterfactual situation to s . 68

• CF (s′, s, L): s′ is a counterfactual situation to s .69

• CFEx one(s
′, s): s′ is a single-action executable counterfactual situation to s 70

• CFEx (s′, s, L): s′ is an executable counterfactual situation to s .70

• noOp: an action that has no effect and is always possible to execute71

• CausesDirectlyprimtemp (a, ts, φ, s): a at ts directly causes a primitive temporal φ in s 81

• end(s′, s): end time of a situation s′ in scenario s . 82

• AchvSit(sφ, φ, s): sφ is the achievement situation of φ in s . 83

• DirPossContr(α, sα, φ): α executed in sα is a direct possible contributor of φ 106

• DirActContr(α, sα, sφ, φ, σ): α executed in sα is a direct actual contributor of φ in σ .107

• PrimaryCause(α, ts, φ, σ): a is primary cause of φ in scenario σ . 108

• PreempContr(a, ts, σ′, φ, σ): a is a preempted contributor of φ in σ 110

• |s|: number of noOp actions in situation s . 112

• DefusedSit(φ, σ, σ′): σ′ is the defused situation of σ with respect to φ 112

ix

Transparency Statement

I used Grammarly to correct grammatical errors and ChatGPT to validate and

paraphrase text, as well as to further explore certain topics in the literature review.

My supervisor(s) and supervisory committee have approved the use of the above

technologies for the described purposes. I confirm that no AI-technologies other

than those listed above have been used to prepare this thesis. I acknowledge that

AI-technologies may produce output that is biased, discriminatory, incomplete, or

inaccurate and that I have taken the necessary steps to address this. I acknowledge

that I am solely responsible for maintaining the accuracy and academic integrity of

this thesis.

x

Chapter 1

Introduction

Causality, the relationship between cause and effect, is a fundamental concept

critical to our understanding of the world. Philosophers categorize causality into two

types: type-level or general causality and token-level or actual causality. Type-level

causality refers to general causal mechanisms describing the relationship between

events (e.g., physical inactivity leads to health problems), whereas actual causality

addresses the causes of a specific observed event given a history of the evolution of

the world (e.g., why the train did not arrive at 8 am given certain actions of the

train engineers). It is not difficult to see the importance of actual causation (or just

“causation” henceforth) in the study of rationality. Such information might be used

by an artificial agent (i.e., an autonomous computational system that is reactive,

proactive, and intentional) to decide on what to do next, e.g., by recognizing the

intentions of another agent it is interacting with, or repair its plans by analyzing

what went wrong in the previous one. Causation is also important for explainable

1

artificial intelligence, which requires users of artificial intelligence to on demand ask

for explaining the choices/decisions made by an agent. Unlike predictive models,

which forecast future events based on patterns or past histories, causal explanations

aim to understand why and how events occur in a cause-and-effect relationship.

Establishing actual causality is complex due to multiple influencing factors or

variables, making it challenging to isolate the exact cause. Philosophers and scientists

have been exploring causal laws since the time of Aristotle, and still, there is no

universally agreed-upon definition that can cover all scenarios [20].

Based on Pearl’s original work [45, 46], Halpern and Pearl, among others [18, 22,

11, 24, 25, 19, 20], have extensively studied actual causation and advanced this field

significantly. Halpern and Pearl’s approach is based on structural equations models

(SEM) [55] and follows the Humean counterfactual definition of causation [27]. This

definition states that “an outcome B is caused by an event A” is the same as saying

that “had A never occurred, B would never have existed.” However, this approach

suffers from the problem of preemption, where another event A′ that occurred after

A in the original history could still cause B in the absence of A (this effect of A′ is

said to be preempted by that of A in the original history). Halpern and Pearl avoid

preemption by performing selective counterfactual analysis and suspending some of

the model’s mechanisms. Despite its practical applications, their approach has been

criticized to be problematic [32], has limited expressiveness, and lacks clear guidelines

for model selection in causal analysis [24, 25, 16]. To deal with these, researchers

have attempted to extend it with additional features [34]. However, many limitations

2

still remain. For example, it is not clear how one can formalize various aspects of

action-theoretic/dynamic frameworks there, such as non-persistent change supported

by fluents, possible dependency between events, temporal order of event occurrence,

etc.

To address this, recently, some researchers have focused on studying causation

within more expressive action-theoretic frameworks, particularly the situation calcu-

lus [3, 4, 32]. The situation calculus allows one to formalize causation from the first-

person’s perspective through the study of epistemic causation (i.e., causal knowledge

[30]), has proven to be useful for explaining agent behavior using causal analysis [31],

and has the potential for defining important concepts like responsibility and blame

[58].

1.1 Motivation and Specific Problem

A distinguishing feature of the real world is that change can be both discrete

and continuous. For instance, when a loss-of-coolant accident occurs due to a pipe

rupture, the associated nuclear power plant may not overheat immediately. Instead,

such safety failures might happen gradually over time. Despite this “hybrid” nature

of change in the real world, almost all of the work on actual causation has focused on

defining causes within discrete domains. In fact, to the best of my knowledge, only one

recent study addressed causation in hybrid systems causal models [23]. In that work,

Halpern and Peters introduced an extension of structural-equation models, known

3

as generalized structural-equation models. These models can capture hybrid systems

by permitting only specified interventions, potentially resulting in an infinite number

of outcomes. To manage the complexity of analysis, the language for discussing

these models is restricted to only explicitly reference countably many values and

interventions. Despite improving on the expressivity of structural-equation-based

causal models, it suffers from the inherent limitations of structural-equations based

causal models as mentioned above.

Returning to our example, however, it would be obviously useful to understand the

causes of such nuclear power plant core overheating given the logged events. Among

other things, such information can be used to avoid future disasters. Thus causal

analysis in hybrid domains is essential for gaining insights into system behavior to

understand how discrete events and continuous processes interact to produce observed

behavior. It can help identify the chain of events leading to a system failure, aiding

in diagnosis and troubleshooting. One can predict how the system will respond to

different inputs, which is essential for designing robust control strategies and ensuring

system reliability. In some domains, such as autonomous vehicles or medical devices,

understanding causation is not only important for technical reasons but also for legal

and ethical considerations. For example, knowing the causes of accidents or failures

can help assign responsibility and ensure accountability.

4

1.2 Contributions

Inspired by previous work on the action-theoretic formalization of actual causa-

tion [4, 30], in this thesis, I propose a formal account of actual causality in hybrid

dynamic domains. My proposal is set within a recently developed hybrid variant of

the situation calculus, namely the hybrid temporal situation calculus [1, 2]. I focus

on actual primary causes and study causation relative to primitive fluents exclusively.

My contributions are outlined below:

1. In discrete domains, I define counterfactual worlds and demonstrate that remov-

ing the primary cause may not always remove the effect (e.g., due to preempted

actions).

2. I define a proper “causal setting” for hybrid domains, which includes a tuple

consisting of a domain theory specifying the actions in the domain, a history

of actions that occurred before the effect was observed (called the scenario),

and the effect for which we aim to identify the causes in the given scenario.

Then I introduce a definition of the primary achievement cause relative to a

causal setting with effects involving a primitive temporal fluent. This involves

addressing the challenge of identifying the achievement situation of an effect to

determine causes while considering the temporal order of events/actions.

3. I present preliminary definitions of primary cause for compound cases, where

the effect involves a conjunction or a disjunction of primitive temporal fluents.

5

4. I prove some basic properties of my formalization of primary achievement cause.

5. I propose a new definition of primary cause in hybrid domains that was de-

veloped to study causes from a counterfactual perspective. I show that this

definition is equivalent to the one in 2 above.

6. I extend my counterfactual analysis above from discrete to hybrid domains and

formalize a notion of defused situations, which removes the cause along with

preempted causes. Using this, I show that without the cause, the effect does not

follow in such a defused situation, unless the required conditions were already

initially true. This allows me to show how my proposal can be linked to a

counterfactual interpretation of causes.

7. To illustrate these definitions, I give some formal examples and prove various

properties of these domains.

A preliminary version of some of my proposals in contributions 2 to 4 above appeared

in the 37th Canadian Conference on Artificial Intelligence (Canadian AI 2024), where

our paper won the Best Student Paper award; see [42].

1.3 Thesis Organization

The thesis is organized as follows. In the next chapter, I survey the literature,

providing a comprehensive overview of the existing research and theories related to

causality. In Chapter 3, I introduce my base framework, the situation calculus [52],

6

and the recently proposed hybrid temporal situation calculus [1]. I recap previous

work on actual causation within the situation calculus for discrete domains and high-

light relevant theories that have influenced my approach. I also propose a definition

of counterfactual situations in the situation calculus. This part is novel to this thesis.

In Chapter 4, I propose a definition of primary achievement cause for effects involv-

ing primitive temporal fluents, prove some properties of my definition, and illustrate

the intuition of my work with examples. In Chapter 5, I give another definition of

the primary cause under the same assumptions, show how this new definition can

characterize my proposal in counterfactual terms, and give formal examples for bet-

ter understanding. Finally, in Chapter 6, I conclude the thesis with a discussion of

results and possible future work.

7

Chapter 2

Literature Review

2.1 Introduction

In this chapter, I review previous work on modeling actual causality. I begin by

introducing two popular approaches to causation, the regularity and counterfactual

theories. I then examine a pioneering approach based on Structural-Equations, dis-

cussing its implications and limitations. Following this, I review research conducted

within a more expressive action-theoretic framework—the situation calculus—which

effectively models dynamic domains, noting how it enriches causal analysis while be-

ing limited to discrete domains. Finally, I explain the concept of hybrid systems

and discuss the only other work on causation in hybrid domains, highlighting its

limitations.

8

2.2 Regularity Theories of Causation

According to David Hume’s 18th-century regularity theory [27], causation is not

grounded in a necessary connection between cause and effect but is instead based on

the observation that certain events (causes) are consistently followed by other events

(effects). Hume identified three key aspects of causation: constant conjunction (events

are regularly associated), temporal succession (the cause precedes the effect), and the

notion of necessity (which we infer from repeated observations rather than direct

perception). For instance, when a hot coffee is spilled, burning of the hand often

follows. This repeated succession leads us to form an association between cause and

effect. We come to expect the effect when we encounter the cause, not due to any

inherent causal power but because of the observed pattern of regularity. As Hume [27]

famously remarked, “We only infer the existence of one thing from the appearance of

the other and are led to conceive that there is some connection between them, but

are never able to discover what that connection is.”

Hume’s regularity theory thus challenges the intuitive belief in a necessary connec-

tion between cause and effect and has profoundly influenced subsequent philosophical

and scientific discussions. However, a potential concern could arise regarding scenar-

ios, particularly hybrid temporal ones, where the effects may not be immediately

observable. This issue is the central focus of my research.

Others have later proposed their formalization of causation based on Hume’s work

and came up with their own variant of regularity theory, e.g., [38].

9

2.3 Causes and INUS Conditions

Mackie [38] argued that causation is complex, involving multiple factors that may

not be sufficient alone but are necessary within a set of conditions that together

cause an effect. For example, a power plant needs fuel, a generator, cooling water,

and a transmission system to generate electricity. None of these alone is enough, but

together, they are sufficient to produce and distribute electricity. Also, the notion

that a cause must be a necessary and sufficient preceding condition for an effect is

problematic because multiple sufficient conditions often exist, and a cause might be

part of one sufficient condition but replaceable by other factors in a different sufficient

condition.

Building on Hume’s regularity theory, Mackie [38] introduced the INUS condition

to address this oversimplification in causal complexity, representing a significant re-

finement in the study of causation. The INUS condition stands for an “Insufficient

but Necessary part of a condition which is itself Unnecessary but Sufficient” for the

occurrence of a certain effect. In this analysis, for an event A to be considered a

cause of event B, there must exist a combination of conditions X and Y such that

(A ∧X) ∨ Y is both necessary and sufficient for B. This implies that neither A nor

X alone can bring about B, but A in conjunction with X can, and Y provides an

alternative sufficient condition.

In a power plant scenario, fuel is an INUS condition for generating electricity. The

fuel alone isn’t enough; it also needs a generator, cooling water, and a transmission

10

system. While necessary in this scenario, electricity could also be generated using

wind or solar power, making the specific fuel unnecessary in a broader sense. However,

when combined with the other factors, the fuel is sufficient to generate electricity. This

framework emphasizes the complexity and interconnectedness of causal relationships,

challenging simpler views of causation that focus on direct, one-to-one effects, by

highlighting how specific conditions contribute to an outcome in a non-redundant

manner.

2.4 Counterfactual Theories of Causation

David Lewis [37] suggests that causation can be understood in terms of what

would happen under different alternative conditions to what actually happened, i.e.,

counterfactual situations. Formally, an event A is said to cause an event B if and only

if in the closest possible world where A does not occur, B also does not occur. The

closest possible world is the one that is most similar to the actual world and where

A does not occur.

Critics argue that counterfactual theories of causation are potentially unreliable

due to the subjectivity in defining the “closest possible world”, an overemphasis on

counterfactual dependence while neglecting actual causal mechanisms, and challenges

in applying the theory to complex systems with many interacting variables.

Defenders of the counterfactual theory argue that, despite criticisms of its poten-

tial subjectivity and complexity in real-world scenarios, the theory can be objectively

11

defined through rigorous criteria, integrated with other causal theories for a more

comprehensive understanding, and remains practically valuable in applications such

as legal reasoning and scientific modeling.

In fact, experimental results from psychology show that varying relevant counter-

factual worlds while keeping the actual world events fixed strongly affect participants’

causal judgments [44]. In contrast, keeping the counterfactual worlds constant and

varying how the actual outcome was brought about much less influenced their causal

judgments. This demonstrates that human causal judgments are inextricably linked

to counterfactuals. This close interconnection has also been emphasized by researchers

while studying causal responsibility [32] and causation in legal and moral reasoning

[24]. Much of the work on causal models discussed next is based on counterfactual

reasoning.

2.5 Causal Models based on Structural-Equations-Modeling

Halpern and Pearl [18, 19, 20, 21, 22] pioneered the formal modeling of actual

causality based on the notion of counterfactuals, utilizing Structural-Equations Mod-

els to analyze causal relationships between variables. Structural-equations models use

mathematical equations to define and analyze the causal relationships among multi-

ple variables, including both direct and indirect effects. A structural-equations model

consists of a pair (S,F), where S is the signature listing the variables and their

possible values, and F is a set of equations. A signature S is a tuple (U ,V ,R, I)

12

where U is the set of exogenous variables, V is the set of endogenous variables, I is

a set of interventions, and R assigns each variable Y ∈ U ∪ V a finite set of possible

values R(Y). F specifies how the values of endogenous variables are determined by

exogenous variables and other endogenous variables. Endogenous variables are the

ones whose values are determined by other variables in the model, while exogenous

variables are outside factors that affect the model but are not influenced by it. In-

terventions, involve setting the value of a variable, resulting in a modified structural

equation model that reflects counterfactuals. For each endogenous variableX, there is

an associated function FX that determines its value based on other variables in U ∪ V .

Outcomes are determined by solving the structural equations given the context and

interventions. For example, if the structural equation is given by FX(u, y, z) = u− y,

then X is determined by the equation X = U − Y . If U = 5 and Y = 3, substituting

these values into the equation gives X = 5− 3 = 2.

According to Halpern and Pearl, an event X is considered an actual cause of

another event Y if and only if:

1. There exists a causal chain from X to Y , meaning factor X influences Y .

2. There are no blocking paths preventing the flow of influence from X to Y ,

considering counterfactual reasoning to understand how changing one factor

would affect the outcome.

They proposed the following conditions for an event to be the cause of another:

1. Sufficiency: X is a cause of Y if the occurrence of X is sufficient to bring

13

about Y .

2. Necessity: X is a cause of Y if the absence of X would have prevented Y .

3. Proportionality: X is a cause of Y if it increases the probability of Y .

They came up with three different definitions, each of which was later proven prob-

lematic (using counter-examples) by others. I will give their modified definition of

the actual cause below:

Definition 2.5.1. Let U and V be the sets of exogenous and endogenous variables,

(M, V̄U) be a causal setting, X be an endogenous variable, and VX be the value of

X (see [20] for details). The conjunction of primitive events X̄ = V̄X , short for

X1 = VX1 ∧ · · · ∧Xk = VXk
, is an actual cause in (M, V̄U) of an HP query φ (whether

one event is an actual cause of another event in a given causal model) if all the

following conditions hold:

1. (M, V̄U) |= (X̄ = V̄X) and (M, V̄U) |= φ.

2. There exists a set W̄ (disjoint from X̄) of variables in V with (M, V̄U) |= (W̄ =

V̄W) and a setting V̄ ′
X of variables X̄ such that (M, V̄U) |= [X̄ ← V̄ ′

X , W̄ ←

V̄W]¬φ.

3. No proper subconjunction of (X̄ = V̄X) satisfies conditions 1 and 2.

That is, a set of variables X is an actual cause of an outcome φ if both X and φ

are true in the actual scenario. Changing X to different values while keeping other

14

related variables fixed must make φ false. Additionally, no proper subset of X can

fulfill these conditions, indicating that X is essential for causing φ.

The limitations of the above definition can be illustrated through the well-known

“bottle” example. In this scenario, Suzy and Billy each throw rocks at a bottle.

Suzy’s rock hits first, shattering the bottle, while Billy’s rock would have shattered

it if Suzy’s had not. The situation is modeled using structural equations with five

endogenous variables: ST (Suzy throws), SH (Suzy hits), BT (Billy throws), BH

(Billy hits), and BS (bottle shatters). The relationships are defined as follows:

• ST = 1 (Suzy throws),

• BT = 1 (Billy throws),

• SH = ST (Suzy hitting depends on her throw),

• BH = BT ∧ ¬SH (Billy hitting depends on his throw and Suzy missing),

• BS = SH ∨ BH (the bottle shatters if either Suzy or Billy hits it).

The modified definition identifies Suzy’s throw (ST) as the cause of the bottle shat-

tering (BS) by assuming that stopping Suzy’s throw and preventing Billy from hitting

would result in the bottle not shattering. However, this reasoning is counter-intuitive

and violates the structural model. If Suzy does not throw but Billy does, Billy must

hit the bottle, making the assumption that Billy does not hit inconsistent. This issue

arises from selectively applying interventions which leads to impossible scenarios.

15

While this approach provided important computational insights into causal mod-

els, it also has several limitations. A significant drawback of structural-equations

modeling is its inability to distinguish between conditions and transitions, making it

challenging to differentiate between enduring conditions (e.g., a bridge is collapsed)

and transitional events (e.g., a bridge collapses). For example, consider a bridge

that collapses due to an earthquake but would have been demolished for construction

five minutes later. While the earthquake is the immediate cause of the collapse, it

may not be accurate to attribute the bridge’s state of being collapsed far into the

future solely to the earthquake. This distinction is crucial for accurate causal deter-

minations. Additionally, structural-equations modeling struggles with distinguishing

between the presence and absence of events, particularly action versus inaction. Also,

fluents cannot change after becoming true, and all events are assumed to be indepen-

dent and have no preconditions. Finally, temporal ordering of events is also ignored.

These limitations highlight the need for more sophisticated frameworks to address

these nuances for precise causal reasoning.

2.6 Causality and Counterfactuals in the Situation Calculus

Structural equation models struggle to differentiate between the presence and ab-

sence of events, a challenge that the situation calculus specification overcomes by

distinguishing between actions and enduring conditions. For instance, it can differ-

entiate between turning off a light (an action) and the room being dark (an enduring

16

condition) by incorporating fluents. Hopkins and Pearl [26] propose causal models

within the framework of the situation calculus, which are sequences of possible or

necessary actions while omitting those that are not. These actions represent real

events and allow for evaluating counterfactual scenarios, offering a more flexible and

expressive approach to reasoning about causation than structural-equations models.

Given a situation S which is a sequence of actions (a1, a2, . . . , an), and a set of

actions A as a subset of actions in S, the expression S−A denotes the situation that

results from removing all actions in A from S. A potential situation is represented as

a pair (S, F), where S is the sequence of actions, and F is a function that specifies

which actions in S should be considered or ignored. A situation calculus causal

model M comprises a setup D and a potential situation P . D represents situation

calculus basic action theory axioms (3.2.2) that define both domain-dependent and

domain-independent aspects of actions and their effects on properties and situations.

The model adjusts S and F to determine which actions are necessary or should be

omitted. The natural executable substitution NES (M) for the model executes each

action in P if feasible, demonstrating the actual sequence of events under the model.

After establishing hypothetical scenarios within a situation calculus specification D,

one can ask basic questions like whether something is true, if something has a specific

value, or if a particular action happened. In this framework, a statement takes the

form [¬a1, . . . ,¬am, b1, . . . , bn]q(U), where a1 to am are actions that are omitted, b1 to

bn are actions that are executed in the hypothetical scenario, q represents the query,

and U describes the initial situation S0. To determine the truth of such a statement

17

in a causal model M = (D,P), one verifies if D and U support it, reflecting the actual

events.

This approach advocates using situation calculus for causality due to its expres-

sivity, but it lacks clear guidelines for selecting causal models and does not address

action preconditions or methods for identifying actual causes/actions responsible for

a condition.

2.7 Bochman’s non-monotonic Account

Bochman [5] argues that previous models relied heavily on counterfactual reason-

ing or regularity accounts without sufficiently addressing the nuances of action and

change in dynamic systems. Motivated by the need for a more expressive and formal-

ized approach, Bochman [5] proposed a new definition of actual achievement causes

in the non-monotonic framework of causal calculus introduced by McCain and Turner

[39]. This definition is based on the NESS (Necessary Element of a Sufficient Set)

condition [57], identifying an actual cause as an action or event that is essential to a

condition necessary and sufficient for an effect to occur. The study does not address

two major representational issues: the use of multi-valued variables and the role of

normality and defaults in reasoning about actual causation.

18

2.8 Batusov and Soutchanski’s Foundational Account of

Causes

Inspired by the work of Halpern and Pearl [22] and addressing the limitations

of structural equations, Batusov and Soutchanski [4] proposed a solution for actual

causality within the more expressive framework of the situation calculus. Their ap-

proach requires that the effect must be achieved within the scenario for its achieve-

ment causes to be computed. They provide definitions for both direct (primary) and

indirect (secondary) causes. A direct cause is an action that directly brings about the

effect, while an indirect cause either enables the execution of the primary cause or

makes the condition of interest conditionally or partially true. Additionally, Batusov

and Soutchanski introduce the concept of maintenance causes, which are responsible

for sustaining the achievement of the effect. To compute the entire chain of actions

responsible for the effect, they utilize a regression operator introduced by Reiter [52].

However, their method is limited to scenarios that are linear and involve only discrete

changes. I will discuss their approach further in Chapter 3 as it serves as a foundation

for my research.

2.9 Causal Knowledge and its Dynamics

Khan and Lespérance [30] argued that causality should be considered not only

from an objective standpoint but also from the agent’s perspective. They noted that

in situations where knowledge is incomplete, an agent may be unable to determine

19

the cause of an effect. However, in dynamic domains, an agent can acquire more

knowledge through sensing actions or when another agent informs her about certain

facts. To address these issues, Khan and Lespérance, building on the work of Batusov

and Soutchanski [4], proposed an inductive definition of actual causes, essentially em-

bedding the formalization of actual causes into the language of the situation calculus.

This is in contrast to Batusov and Soutchanski’s work which is meta-theoretical for-

malization of causes. This allowed them to naturally combine the notions of cause

and knowledge and study the epistemics of causation and causal knowledge dynamics.

They demonstrate that enabling such introspective behavior in agents is beneficial in

multi-agent systems, allowing agents to interact, collaborate, identify the agent re-

sponsible for an effect, and prevent other agents from performing certain actions, thus

enriching the domain dynamics. However, like the earlier approach, their framework

handles only discrete changes and linear scenarios. I will use their definition to define

direct causes in hybrid domains. I will discuss their approach in detail in Chapter 3.

2.10 Necessary and Sufficient Conditions for Actual Root

Causes

While the aforementioned work on causation appeals to intuition, some argue for

a counterfactual perspective. Khan and Soutchanski [32], aligning with the counter-

factual approach, defined necessary and sufficient conditions for achievement causes.

20

They define necessary causes as actions contributing to an effect without being pre-

empted, and whose effects persist until the scenario’s end. Sufficient causes are actions

that must bring about the effect upon execution. Additionally, they define counterfac-

tual dependence of an action, indicating the effect would not occur without it. They

introduce “enduring producers” as actions that meet both necessary and sufficient

conditions and demonstrate that their definition aligns with Batusov and Soutchan-

ski’s earlier work [4]. They discussed how this counterfactual account of causation

can also be interpreted from a regularity perspective related to INUS condition. This

work thus contributes to the ongoing debate between the counterfactual and regu-

larity approaches by combining both perspectives, offering a comprehensive analysis

that supports a more unified understanding of causation.

2.11 Anil Nerode’s Hybrid Systems

Anil Nerode [43] introduced the term “Hybrid Systems” to describe systems where

discrete and continuous processes interact in real-time. These systems typically con-

sist of plants, whose evolution is to be constrained, sensors, which transfer plant state

measurements to controllers, controllers, which issue control orders, and actuators,

which change the plant state. The challenge lies in designing sensors and controllers

to meet specific system requirements, which is particularly important in fields like air

traffic control, supply chain management, and network routing. In the 1980s, hybrid

21

systems theory was developed to systematically address these challenges by convert-

ing discrete constraints into continuous ones, enabling the transformation of complex

systems into continuous models with approximate optimal controls achieved through

finite control automata [33].

The literature on hybrid systems has grown significantly, particularly in verifi-

cation problems. Nerode’s contributions to linear control, along with Wolf Kohn’s

Declarative Control approach using PROLOG [43] at Boeing, have played a key role

in this expansion. Conferences, such as the 1992 International Hybrid Systems Con-

ference at Cornell, have fostered collaboration and established a common framework

for hybrid systems research. Despite these advancements, ensuring the robustness

and accuracy of control models remains critical, with extensive testing needed to ad-

dress potential inaccuracies. Future research will likely explore deeper connections

between hybrid systems and logical frameworks to drive further progress in causation

and control [33].

2.12 Causal Models with Infinitely Many Variables

Traditional structural-equations models face limitations when dealing with com-

plex systems, especially those with infinitely many variables or continuous ranges. Re-

cently, Perters and Halpern [23] introduced Generalized Structural-Equations Models

that extend the capabilities of traditional structural-equations models to represent

complex models like systems of differential equations and hybrid automata, allowing

22

for more flexible and accurate modeling of causal relationships and interventions.

Formally, a generalized structural-equations modelM is a pair (S,F), where S is

a signature, and F is a mapping from contexts and interventions to sets of outcomes.

The signature is the same, a quadruple (U ,V ,R, I), defines variables, their possible

values, and allowed interventions. Unlike in structural-equations models, U and V are

not required to be finite, nor are the possible outcomes mapped by the functionR(Y).

In generalized structural-equations models, the number of variables (U and V) and

their ranges R(Y) can be infinite. Given an intervention and context, generalized

structural-equations models produce a set of variable assignments (outcomes) that

can be infinite, whereas outcomes in structural-equations models are limited due to

the finite number of variables. It can represent variables indexed by time or other

continuous parameters. Additionally, generalized structural-equations models allow

specifying which interventions are permitted, providing a more expressive feature

than structural-equations models.

Consider an example of managing traffic flow at an intersection. To model the

effects of changing a traffic light’s state on vehicle behavior, consider variables like

the number of cars arriving at the intersection per second (Ct), the state of the traffic

light (Lt) with possible values {green, yellow, red}, and the drivers’ reaction times

(Rt). An intervention at t = 5 changes the light to red (Lt ← red). The outcomes

depend on contextual factors like weather, traffic density, and driver behavior. Some

drivers may stop immediately (Ct → 0), others may slow down gradually, and adverse

weather might delay stopping further (Ct > 0 for a longer period). The generalized

23

structural-equations models map the intervention and context to a set of possible

outcomes for Ct, representing different traffic patterns post-intervention. By accom-

modating multiple possible results, generalized structural equation models provide a

more comprehensive framework for analyzing such dynamic and uncertain scenarios.

Despite their increased expressiveness, generalized structural-equations models

face several challenges. The potential for infinitely many outcomes complicates rea-

soning and analysis, often necessitating a restriction to a language that references only

countably many values and interventions explicitly. Additionally, notable issues per-

sist: fluents cannot change once they become true, the models do not handle depen-

dencies between events (however, actions without preconditions is counter-intuitive),

and they do not account for the temporal order of event occurrences. Moreover, the

lack of a directed acyclic graph (DAG) structure in generalized structural-equations

models limits the use of graphical tools like the do-calculus, which are widely used in

structural-equations modeling analysis. While this trade-off limits certain analytical

capabilities, generalized structural-equations models offer broader applicability and

expressiveness, particularly for representing dynamical systems and complex causal

relationships that structural-equations models cannot handle.

2.13 Conclusion

In this chapter, I outlined some previous work on actual causation, hybrid dynamic

frameworks, and causal models that can support infinitely many variables. In the

24

next chapter, I will give details of some of these works, in particular of those that are

directly related to my proposal.

25

Chapter 3

Foundations

3.1 Introduction

In this chapter, I discuss previous work on formalizing dynamic domains, which

will form the basis of my work in the next chapters. I start with our base frame-

work, the situation calculus, which is a dialect of first-order logic that can be used

to reason about actions and their effects. I then discuss a variant of the situation

calculus, namely Hybrid Temporal Situation Calculus, that supports domains with

both discrete and continuous change. I use this in Chapter 4 as my base framework

for defining primary cause in hybrid dynamic domains. I also discuss previous work

on formalizing achievement causes in discrete domains within the situation calcu-

lus. Finally, I propose a specification of counterfactual worlds in discrete domains,

which I will later extend to handle hybrid domains in Chapter 5. This part is a new

contribution.

26

3.2 The Situation Calculus

3.2.1 Introduction

The situation calculus is a well-known second-order language for representing and

reasoning about dynamic worlds. The formalism was first introduced by John Mc-

Carthy [40], and later it was axiomatized and further developed by Raymond Reiter

[52]. In the situation calculus, all changes in the world result from named action

terms. Thus, actions are first-order terms; for example, pickUp(r , d) might indicate

the robot r’s action of picking up device d, activate(r , d) might mean r’s action of

activating device d, and move(r , a, b) can be used to denote r moving from location

a to location b, etc.

Situations represent a possible world history resulting from performing some ac-

tions. In the situation calculus, a model of the possible evolution of the world forms

a tree-like structure, where each node corresponds to a situation, starting from the

initial situation and branching out with each action execution. Each branch con-

sists of a sequence of actions occurred in some possible evolution and their resulting

situations. The constant S0 is used to denote the initial situation where no action

has been performed yet, meaning S0 has no predecessor situation. There is a dis-

tinguished binary function symbol do; do(a, s) denotes the successor situation to s

resulting from performing the action a. For example, do(activate(r, d), s) denotes the

successor situation resulting from r activating device d when the current situation is

27

s. The expression do([a1, · · · , an], s) is an abbreviation that can be defined as:

do([a1, · · · , an], s)
.
= do(an, do(an−1, · · · do(a1, s) · · ·)). (3.1)

It thus represents the situation resulting from executing actions a1, · · · , an, starting

in situation s.

There is a special predicate Poss(a, s), which indicates that action a is executable

in situation s . Additionally, the binary predicate s ⊏ s′ denotes that situation s′ can

be reached from s by executing some sequence of actions. s ⊑ s′ is defined as:

s ⊑ s′ ≡ s ⊏ s′ ∨ s = s′. (3.2)

Moreover, s < s′ is an abbreviation of s ⊏ s′ ∧Executable(s′), where Executable(s) is

defined as follows.

Definition 3.2.1 (Executable Situation).

Executable(s)
def
= ∀a, s′.do(a, s′) ⊑ s ⊃ Poss(a, s′).

That is, a situation s is executable if and only if all actions in its history were possible

to execute in the order of their occurrence.

Fluents in the situation calculus are situation-dependent properties of interest

that change their truth values due to action executions. Relational fluents, denoted

28

by predicate symbols with a situation term as the last argument, have truth values

that vary between situations. For example,“Holding(r, d, s)” might indicate that a

robot r is holding a device d in situation s. Functional fluents, denoted by function

symbols with a situation term as the last argument, have values that vary between

situations. For instance,“location(d, s)” can be used to return the location of device

d in situation s.

We will also use a notion of uniform formula in the situation calculus.

Definition 3.2.2 (Uniform Formula in σ). A formula is uniform in situation σ if

and only if it does not mention the predicates Poss or ⊏, it does not quantify over

variables of sort situation, it does not mention equality on situations, and whenever

it mentions a term of sort situation in the situation argument position of a fluent,

then that term is σ.

3.2.2 Basic Action Theory

An action theory refers to a collection of axioms that describe how the state of

the world changes as a consequence of action execution. In the situation calculus,

a dynamic domain is specified using a basic action theory (BAT) that includes the

following sets of axioms:

1. First-order initial state axioms DS0 , which indicates what is true initially.

2. First-order action precondition axioms Dap , characterizing Poss(a, s).

29

3. First-order successor-state axioms Dss , indicating precisely when and how the

fluents change.

4. First-order unique names axioms Duna for actions, stating that different action

terms represent distinct actions.

5. Second-order domain-independent foundational axioms Σ, describing the struc-

ture of situations.

Overall, the situation calculus basic action theory D is a collection of axioms, D .
=

Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 [35, 52]. I now explain each of these types of axioms.

Initial State Axioms

These are used to specify the initial values of the fluents at the start of the reason-

ing process, i.e., in S0. The actual content of the initial state axioms will depend on

the specific domain being modeled. For example, one might use the following axiom

to state that a device D1 is not active in situation S0:

Axiom 3.2.1.

¬Active(D1, S0).

Action Precondition Axioms

Actions often have preconditions that must be satisfied in a specific situation

before they can be performed in that situation. Recall that the predicate Poss(a, s)

states that action a is physically executable in situation s. In situation calculus basic

30

action theory, every action is associated with a precondition axiom of the following

form, where ΠPoss(a, s) is a formula that is uniform in situation s1.

Axiom 3.2.2.

Poss(a, s) ≡ ΠPoss(a, s).

For example, if for a robot r it is possible to tag a new price d to some product p

in situation s if and only if r is next to p, and the current price (modeled using the

function price) is different from the new price (d), then this can be specified using

the following axiom.

Axiom 3.2.3.

Poss(tagPrice(r, p, d), s) ≡ NextTo(r, p, s) ∧ ¬(d = price(p, s)).

Successor-State Axioms

Before we discuss successor-state axioms, let us reflect on the motivation behind

adding these.

Effect Axioms. Any action theory must encode the evolution of the world

brought about by action execution. In the situation calculus, such changes in the

world can be specified using effect axioms, which describe how actions affect flu-

ents. For relational fluents, there can be positive effect axioms, stating when a fluent

changes its value from true to false, and negative effect axioms, describing actions

1Henceforth, all free variables are assumed to be universally quantified from the outside, and
thus, e.g., P (x, y) ≡ Q(x, y) stands for ∀x, y.P (x, y) ≡ Q(x, y).

31

and conditions under which fluent changes from false to true. For instance, a positive

effect axiom for the relational fluent SoldOut(p, s) can be specified as follows.

Axiom 3.2.4.

inStock(p, s) = 1 ⊃ SoldOut(p, do(sell(p), s)).

That is, product p is sold out after someone sells the last stock of p in situation

s. Similarly, a negative effect axiom for SoldOut(p, s) can be specified as follows.

Axiom 3.2.5.

¬SoldOut(p, do(restock(p, n), s)).

Thus, p is no longer sold out after n number of it is restocked in situation s. For

functional fluents, we only need one effect axiom.

Frame Axioms. The problem with effect axioms is that these do not specify

which fluents remain unchanged when an action is performed. For example, pickUp

and drop actions do not change the price, availability, color, weight, category, etc.,

of a product. Thus, to specify that picking up a product does not change its weight,

one can use the following axiom:

Axiom 3.2.6.

weight(p, s) = x ⊃ weight(p, do(pickUp(r, p), s)) = x.

In general, there are of the order of 2 × A× F frame axioms, where A is the

number of actions and F is the number of fluents. The frame problem [41] involves

32

the specification of this overwhelming number of frame axioms, as identifying all

the fluents that don’t change when an action is executed can be just too big of a

task. Different proposals have been made to address the frame problem. Pednault’s

proposal [47] suggests systematically generating frame axioms from effect axioms,

though it does not reduce the number of frame axioms needed. The proposal by Davis

[7], Haas [17], and Schubert [54] introduces explanation closure axioms, which offer

a more compact representation by universally quantifying over actions. Explanation

closure axioms make a causal completeness assumption, stating that a fluent can

change its value only under the specified conditions in the effect axioms. This means

that if a fluent changes its value from false to true, the positive effect axiom must

have been true, and if it changes from true to false, the negative effect axiom must

have been true. This reduces the number of required axioms from 2 × A × F to

2 × F . However, Schubert [54] argues that explanation closure axioms cannot be

systematically derived from effect axioms and must be independently provided by

the axiomatizer.

Building on these ideas, Reiter [52] developed successor-state axioms by combining

effect axioms with the causal completeness assumption and introducing a consistency

assumption, which states that the conditions under which a fluent becomes true when

an action is executed in some situation and those under which it becomes false are

never jointly satisfied. The successor-state axiom for each fluent states how exactly

a fluent changes its value as a result of actions, and sufficiently encodes both effect

and frame axioms when the causal completeness and consistency assumptions hold.

33

Each fluent is associated with a single successor-state axiom. While these can be

automatically generated given the effect axioms, one can also specify these directly

(and get rid of the effect axioms). Each of these has the following form.

Axiom 3.2.7.

F (x, do(a, s)) ≡ ΦF (x, a, s),

where, ΦF (x, a, s) is a formula that is uniform in s, and typically has the following

form:

Φ+
F (x, a, s) ∨ (F (x, s) ∧ ¬Φ−

F (x, a, s)).

Here, Φ+
F (x, a, s) (and Φ−

F (x, a, s)) specify when fluent F changes to true (and false,

respectively). Successor-state axioms are more complex than effect axioms but are

much fewer in number (one per fluent) compared to total effect and frame axioms.

For example, SoldOut might have the following successor-state axiom:

Axiom 3.2.8.

(inStock(p, s) = 1 ∧ SoldOut(p, do(a, s)) ≡ a = sell(p))

∨ (SoldOut(p, s) ∧ ¬∃n.(a = restock(p, n))).

That is, p is sold out after action a has been performed in situation s, i.e., in

do(a, s), if and only if a refers to selling the last stock of p, or if p was already sold

out in s and a is not the action of restocking some amount n of p.

34

Unique Names Axioms

Successor-state axioms rely on the commonsense assumption, that different action

terms represent different actions. For example, we might want to state that action

pickup is not the same as action drop, i.e., pickup(x) ̸= drop(x). In general, for two

distinct action names f1 and f2, we have:

Axiom 3.2.9.

f1(x) ̸= f2(y).

Also identical actions have identical arguments:

Axiom 3.2.10.

f(x) = f(y) ⊃ x = y.

All the axioms that I discussed above are domain-dependent ones. We also need

the following domain-independent foundational axioms.

Foundational Axioms

Foundational axioms define the structure of situations and the properties of do

and ⊏. These include the following four axioms.

1. do is injective:

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2. (3.3)

35

2. There are no situations other than those reachable from S0:

∀P. P (S0) ∧ ∀a, s. [P (s) ⊃ P (do(a, s))] ⊃ ∀s. P (s). (3.4)

3. The following axioms specify ⊏ as subhistory:

¬s ⊏ S0, (3.5)

s ⊏ do(a, s′) ≡ s ⊑ s′. (3.6)

The following are some basic logical consequences of the foundational axioms [41]:

S0 ̸= do(a, s) (3.7)

do(a, s) ̸= s (3.8)

Existence of a predecessor: s = S0 ∨ ∃a, s′. s = do(a, s′) (3.9)

Grounded in S0 : S0 ⊑ s (3.10)

Transitivity: s1 ⊏ s2 ∧ s2 ⊏ s3 ⊃ s1 ⊏ s3 (3.11)

Anti-reflexivity: ¬(s ⊏ s) (3.12)

Unique names: s1 ⊏ s2 ⊃ s1 ̸= s2 (3.13)

Anti-symmetry: s ⊏ s′ ⊃ ¬(s′ ⊏ s) (3.14)

¬(do(a, s) ⊑ s) (3.15)

s ⊑ s′ ∧ s′ ⊑ s ⊃ s = s′ (3.16)

36

3.2.3 Reasoning in the Situation Calculus

One way to view reasoning is as the process of inferring new knowledge, those that

are logical consequences of the explicitly stated knowledge and action specification in

the knowledge base. Put otherwise, it is a mechanism by which implicit knowledge is

made explicit. A particularly useful type of reasoning in a dynamic setting like the

situation calculus involves determining if a formula φ is true after a sequence of actions

a1, a2, · · · , an has been performed, starting in the initial situation S0, i.e., whether

φ[do([a1, a2, · · · , an], S0)]. A special case of this is to check whether the sequence is

executable, i.e., Executable(do([a1, a2, · · · , an], S0)]). These problems are instances of

the projection problem. The situation calculus provides two techniques for solving

the projection problem, progression, which involves progressing the knowledge base

D with the given sequence of actions and then checking whether φ holds in the

progressed theory (which we will not discuss further here), and goal regression, which

is detailed below.

Regression

Goal regression is a backward inference process. It involves regressing the goal φ

(instead of the theory D) and finding the minimal preconditions that must be true

initially for the given action sequence to achieve φ. Then we can simply check the

regressed version of φ relative to the initial theory DS0 .

37

The main idea behind regression is that since the right-hand side of the successor-

state axioms and action precondition axioms are carefully designed to be uniform in

s (thus preserving the Markovian property), if the number of actions in do(a, s) is

known, one can always replace a fluent F (do(a, s)) with the right-hand side of the

successor-state axiom for F , which only mentions s. Similarly, if the action function

A is known, one can always replace Poss(A, s) with the right-hand side of the action

precondition axiom for A, which only mentions s. By repeatedly applying these two

rules, one can syntactically transform the formula φ[do([a1, a2, · · · , an], S0)] to a for-

mula φ′ that only mentions S0. Thus the task of evaluating φ[do([a1, a2, · · · , an], S0)]

relative to D becomes that of evaluating φ′ relative to the initial theory. In other

words, regression of φ with respect to do([a1, a2, · · · , an], S0) is the weakest precon-

dition φ′ that must be true in the initial situation S0 for the sequence [a1, a2, · · · , an]

to bring about the φ.

A key feature of basic action theories is the existence of a sound and complete

regression mechanism for answering queries about situations resulting from perform-

ing a sequence of actions [48, 52]. In a nutshell, the regression operator R∗ reduces

a formula ϕ about a particular future situation to an equivalent formula R∗[ϕ] about

the initial situation S0.

A formula ϕ is regressable if and only if (i) all situation terms in it are of the form

do([a1, . . . , an], S0), (ii) in every atom of the form Poss(a, σ), the action function is

specified, i.e., a is of the form A(t1, . . . , tn), (iii) it does not quantify over situations,

and (iv) it does not contain ⊏ or equality over situation terms. Thus in essence, a

38

formula is regressable if it does not contain situation variables.

In the following, I give a one-step variant of R∗, R.

Definition 3.2.3 (The Regression Operator). [50]

(1) When ϕ is a non-fluent atom, including equality atoms without functional fluents

as arguments, or when ϕ is a fluent atom, whose situation argument is S0, R[ϕ] = ϕ.

(2a) For a non-functional fluent F , whose successor-state axiom in D is

F (x⃗, do(a, s)) ≡ ΦF (x⃗, a, s), R[F (⃗t, do(α, σ))] = ΦF (⃗t, α, σ).

(2b) For an equality literal with a functional fluent f , whose successor-state axiom is

f(x⃗, do(a, s)) = y ≡ Φf (x⃗, y, a, s), R[f (⃗t, do(α, σ)) = t′] = Φf (⃗t, t
′, α, σ).

(2c) For a Poss literal with the action precondition axiom of the form Poss(A(x⃗), s) ≡

ΠA(x⃗, s), R[Poss(A(⃗t), σ)] ≡ R[ΠA(⃗t, σ)].

(3) For any non-atomic formulae, regression is defined inductively: R[¬ϕ] = ¬R[ϕ],

R[ϕ1 ∧ ϕ2] = R[ϕ1] ∧R[ϕ2], R[∃v. ϕ] = ∃v. R[ϕ].

R∗ can then be defined as the repeated application of R until further applications

leave the formula unchanged. These results have facilitated the implementation of

integrity constraints in databases, planning tasks, and model checking in high-level

agent programming languages like Golog [36] and ConGolog [8].

3.2.4 Limitations of the Situation Calculus

While situation calculus has been widely used to formalize and study various

aspects of dynamic domains and artificial intelligence, the basic variant does come

39

with its own limitations. However, various researchers have addressed most of these

issues by proposing variants of the situation calculus. I will mention the following:

• In the situation calculus, all changes are due to named actions; as well, it

primarily deals with discrete change, and cannot represent continuous change.

See [1] for an account that deals with continuous change and supports change

due to the passage of time.

• Here, action effects are deterministic. See [10] for a recent proposal that deals

with non-deterministic actions.

• It focuses on qualitative representations of information rather than quantitative.

See [49, 6] that incorporates decision theoretic aspects in the situation calculus.

• It does not allow concurrent actions and events. See [51] for an extension that

models this, and [15] for a formalization of multiplayer synchronous games in

the situation calculus.

• It does not take an intentional stance towards agent goals. See, e.g., [53] for a

formalization of knowledge and knowledge change, [12] for a model of iterated

belief change, [28] for an account of intentions and its dynamics, [13] for a theory

of conditions and joint ability, and [29] for belief-desite-intentions (BDI) agent

programming language, all based on the situation calculus.

• It does not handle planning on high-level agent programming. Refer to the

languages in the Golog family of the high-level programming languages, such

40

as Golog [36], ConGolog [8], IndiGolog [9], etc. for solutions.

For this thesis, I am particularly interested in hybrid temporal situation calculus,

which extends situation calculus to hybrid domains. I will thus discuss this in detail

in the next section.

3.3 Hybrid Temporal Situation Calculus

3.3.1 Introduction

The situation calculus only deals with discrete actions and abrupt change of fluents

due to these actions, and does not incorporate a standard notion of time; but in the

real world, change can be continuous as well as discrete. For example, a change in

room temperature after adjusting the thermostat and a change in weather conditions

happen over time, but not immediately. To deal with time and continuous change in

the framework of situation calculus, Reiter proposed temporal situation calculus [52].

The intuition behind Reiter’s idea is that all changes in the world, no matter whether

discrete or continuous, are results of discrete actions. For each continuous process,

there is an action that initiates the change, and there is another instantaneous action

that terminates the change. To accommodate time, Reiter introduced two special

functions, time(a), which refers to the time at which an action a is executed, and

start(s), which refers to the starting time of the situation s. He requires every action

a(x⃗, s) to take a time argument t. time of an action a is specified using the following

axiom:

41

Axiom 3.3.1.

time(a(x⃗, t)) = t.

It is included in DS0 for every action function a(x⃗, t) in the domain. Similarly, the

function start is specified by a new foundational axiom:

Axiom 3.3.2.

start(do(a, s)) = time(a).

The starting time of S0 is not enforced.

Now, consider a situation do(a(x, 1), do(b(x, 2), S0)), where the time of action

a is before the time of action b, but action a is executed after b. This leads to

logical inconsistencies. To prevent such temporal paradoxes, executable situations

are redefined as follows:

Definition 3.3.1 (Executable Temporal Situation).

Executable(s)
def
= ∀a, s′. do(a, s′) ⊑ s ⊃ (Poss(a, s′) ∧ start(s′) ≤ time(a)).

That is, a situation s is executable if and only if all actions in the sequence leading

to s were possible to execute in the order of their occurrence, and the time of each

action cannot be earlier than that of the situation where it was performed. Note that

this allows multiple actions to be executed at the same time.

In Reiter’s temporal situation calculus [52], fluents remain atemporal and do

42

not actually change with time; instead, they attain certain values when some time-

stamped actions are performed. The limitation here is that one cannot query the

value of a continuous fluent at any arbitrary time. For example, in a changing room

temperature scenario, the room’s current temperature cannot be determined at a spe-

cific moment without referencing a time-stamped action. Soutchanski [56] suggested

that one could use an auxiliary exogenous action watch(t) which fixes a time point t

to a situation when it occurs, allowing one to pose an atemporal query in the result-

ing situation. Similarly, an auxiliary exogenous action waitFor(ϕ) can be introduced,

which is executed when the condition ϕ becomes true.

Recently, Batusov and Soutchanski proposed the hybrid temporal situation cal-

culus [1, 2], which draws inspiration from Reiter’s work described above and hybrid

systems in control theory [43]. This approach is based on discrete transitions between

states that continuously evolve over time. The latter change is dictated by discrete

contexts brought about by actions. For example, in a weather prediction system, the

temperature changes continuously depending on whether it is sunny or not, but the

state change from being sunny to cloudy can be viewed as discrete.

The hybrid temporal situation calculus reuses Reiter’s basic action theory (see

Section 3.2.2), with the functions time(a) and start(s) defined as above. Addition-

ally, in hybrid temporal situation calculus, the situation calculus (atemporal) fluents

are preserved. These atemporal fluents no longer represent continuous change but

rather provide a context within which the values of temporal fluents can change. For

instance, the position of a car, a continuous fluent, changes over time when the car

43

is in the state of actively being driven. Here, the discrete fluent Driving(p, c, s), i.e.,

a person p is driving car c in situation s, serves as a context that influences how the

continuous functional fluent position(c, t, s), representing the position of car c at time

t in situation s, varies with time.

To model continuous change, in addition to Reiter’s successor-state axioms, hy-

brid temporal situation calculus includes state evolution axioms [1, 2], each of which

defines how a temporal fluent’s value changes over time when some relevant context

is enabled.

3.3.2 State Evolution Axioms

The foundation of state evolution axioms is Reiter’s temporal change axioms [52].

These axioms describe the change in the value of each temporal fluent in an arbitrary

situation over time and have the general form of:

γ(x, s) ∧ δ(x, y, t, s) ⊃ f(x, t, s) = y, (3.17)

where, t, s, x, and y are variables, and γ(x, s) is the context that specifies the condi-

tions under which the formula δ(x, y, t, s) is to be used to compute the value of fluent

f(x⃗) at time t. There is no restriction on the formula δ, and it can be algebraic,

logical, or differential equations to compute values appropriately. The value of a tem-

poral fluent can change differently under different contexts. The set of k temporal

change axioms for fluent f(x⃗) can be expressed as:

44

Axiom 3.3.3.

Φ(x, y, t, s) ⊃ f(x, t, s) = y,

where Φ(x, y, t, s) is
∨

1≤i≤k(γi(x, s) ∧ δi(x, y, t, s)), and it states that formula δi can

be used to determine the change in f if the context δi is activated. In hybrid temporal

situation calculus, the contexts are mutually exclusive to make sure continuous fluents

do not assume two different values at the same time. To this end, the following

condition is added to the background theory:

Axiom 3.3.4.

Φ(x, y, t, s) ∧ Φ(x, y′, t, s) ⊃ y = y′.

Finally, a causal completeness assumption is required to state that a temporal

fluent’s value cannot change if no context is true [1, 2]. This is formally stated as:

Axiom 3.3.5.

f(x, t, s) ̸= f(x, start(s), s) ⊃ ∃y.Φ(x, y, t, s).

Let Ψ(x, s) denote
∨

1≤i≤k γi(x, s), which is a set of all the contexts related to

a temporal fluent. By combining the temporal change axiom (Axiom 3.3.3) with

the causal completeness assumption axiom (Axiom 3.3.5), state evolution axioms are

obtained:

Axiom 3.3.6 (State Evolution Axiom).

f(x, t, s) = y ≡ [Φ(x, y, t, s) ∨ y = f(x, start(s), s) ∧ ¬Ψ(x, s)].

45

Thus the above state evolution axiom states that the value of a temporal fluent

f(x) changes only if some context γi holds and according to the rules defined in the

formula δi associated with γi; otherwise it remains the same as at the beginning of

the situation. The formula δi(x⃗, y, t, s) implicitly or explicitly defines y using some

arbitrary (domain-specific) constraints on variables and fluents.

State evolution axioms only talk about the continuous change in the value of a

temporal fluent in an arbitrary situation, but it does not fully capture the hybrid

phenomenon. We need a successor-state axiom for each temporal fluent to represent

action-induced discrete changes in fluents. To capture this hybrid phenomenon, for

each temporal functional fluent f(x, t, s), an additional auxiliary atemporal functional

fluent finit(x, s) along with its successor-state axiom is introduced.

We also need the following condition:

Axiom 3.3.7.

¬∃y(e(x, y, a, s)) ⊃ finit(x, do(a, s)) = f(x, time(a), s).

It assumes that the effect axiom from which the successor-state axiom for finit was

defined has the form e(x, y, a, s) ⊃ finit(x, do(a, s)) = y and states that if no relevant

effect axiom is invoked by an action a then finit takes the most recent value of the

associated temporal fluent f(x, t, s). To keep consistency between temporal fluents

and their relevant atemporal fluents, it is required that in an arbitrary situation, the

continuous evolution of each temporal fluent f starts with the value computed for

46

finit by its successor-state axiom.

Hybrid Temporal Situation Calculus Basic Action Theory

A hybrid basic action theory [1] then is a collection of axioms:

Axiom 3.3.8.

D = Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 ∪ Dse,

where, the following are defined the same as in the situation calculus basic action

theory (see Section 3.2.2): Σ (foundational axioms), Dss (successor-state axioms),

Dap (action precondition axioms), Duna (unique names axioms), and DS0 (initial-

state axioms). And, Dse is the set of state evolution axioms. Also, as discussed above,

hybrid basic action theory requires that every action mentioned in D is temporal and

has a time argument.

To maintain consistency within the framework, we need to define the notion of

stratified basic action theory. First, let me state the stratified state evolution axiom.

Definition 3.3.2 (Stratified State Evolution Axiom). A set of state evolution axioms

Dse is stratified if and only if there are no temporal fluents f1, ..., fn such that f1 ≻

f2 ≻ ... ≻ fn ≻ f1, where f ≻ f ′ holds if there is a state evolution axiom in Dse,

where f appears on the left-hand side and f ′ on the right-hand side.

Using this, stratified temporal basic action theories are defined as follows.

Definition 3.3.3 (Stratified Temporal Basic Action Theory). A temporal basic action

theory D is stratified if and only if its state evolution axioms Dse are stratified.

47

Simply put, the stratification condition implies that there should be no cyclical re-

lationships among the temporal fluents. It can be shown that a stratified temporal

basic action theory D is satisfiable if Duna ∪ DS0 is satisfiable.

3.3.3 Reasoning in Hybrid Temporal Situation Calculus

As discussed in Section 3.2.3, projection is a common computational task that

involves determining the truth value of a statement after executing a sequence of

actions. Building on the situation calculus, Batusov, De Giacomo, and Soutchanski [2]

demonstrated that the concepts of uniform and regressable formulas in the situation

calculus [52] can be extended to hybrid temporal situation calculus, and the standard

regression operator R, defined for atemporal fluents (see Definition 3.2.3), can be

extended to handle temporal fluents. See [2] for details. They then proved a variant

of Reiter’s regression theorem:

Theorem 3.3.9 (Regression in Stratified Temporal Basic Action Theory). If W is

a regressable sentence of situation calculus and D is a stratified temporal basic action

theory, then D |=W if and only if DS0 ∪Duna |= R[W].

Thus to the situation calculus, reasoning about queries in the temporal case can also

be reduced to the task of first-order theorem proving.

48

3.3.4 Example

I use a simple nuclear power plant (NPP) scenario as my running example in this

thesis. While a nuclear power plant produces electricity, its core temperature needs

to be maintained below a certain threshold by incorporating a cooling system. The

cooling system does this by using coolant supplied through pipes attached to it. For

simplicity, I assume just one (unnamed) pipe per plant. In this domain, we have the

following actions:

1. rupture(p, t), i.e. the pipe in plant p ruptures at time t.

2. csFailure(p, t), i.e. the cooling system of p fails at t.

3. fixP(p, t), i.e. the pipe of plant p is fixed at t.

4. fixCS (p, t), i.e. the cooling system of p is fixed at t.

5. mRadiation(p, t), radiation level of p is measured at t.

The discrete fluents in this domain are:

1. Ruptured(p, s), representing plant p has a ruptured pipe in situation s.

2. CSFailed(p, s), representing the cooling system of p has failed in s.

We also have a temporal functional fluent coreTemp(p, t , s), which stands for the core

temperature of power plant p at time t in situation s.

I now give the domain-dependent axioms, starting with the action precondition

axioms.

49

Axiom 3.3.10.

a) Poss(rupture(p, t), s) ≡ true,

b) Poss(fixP(p, t), s) ≡ Ruptured(p, s),

c) Poss(csFailure(p, t), s) ≡ ¬CSFailed(p, s),

d) Poss(fixCS (p, t), s) ≡ CSFailed(p, s),

e) Poss(mRadiation(p, t), s) ≡ true.

These can be read as follows:

(a) a rupture action is always possible;

(b) fixing the pipe of plant p is possible in situation s if and only if the pipe of p is

already ruptured in s;

(c) the cooling system failure of plant p action can be executed in situation s if and

only if the cooling system of p has not already failed in s;

(d) fixing the cooling system of p is possible in situation s if and only if the cooling

system of p has already failed in s; and

(e) the measure radiation of p action has no precondition and is always possible to

execute.

We also have the following successor-state axioms for each fluent:

50

Axiom 3.3.11.

a) Ruptured(p, do(a, s)) ≡

∃t. a = rupture(p, t) ∨ (Ruptured(p, s) ∧ ¬∃t. a = fixP(p, t)),

b) CSFailed(p, do(a, s)) ≡

∃t. a = csFailure(p, t) ∨ (CSFailed(p, s) ∧ ¬∃t. a = fixCS (p, t)).

Thus, Axiom 3.3.11(a) says that the pipe of plant p has ruptured after action a

happens in situation s, i.e. in do(a, s), if and only if a is the action of rupturing the

pipe of p at some time t, or the pipe of p was already ruptured in s and a does not

refer to the action of fixing the pipe of p at some time t. And, according to Axiom

3.3.11(b), the cooling system of plant p has failed after action a happens in situation

s, i.e. in do(a, s), if and only if a refers to the failure of cooling system of p action

at some time t, or the cooling system of p was already broken in s and a is not the

action of fixing the cooling system of p at some time t.

For core temperature, before giving the state evolution axiom, let me list the

contexts γi, for i = 1 to 3:

γ1(p) = Ruptured(p) ∧ CSFailed(p),

γ2(p) = Ruptured(p) ∧ ¬CSFailed(p),

γ3(p) = ¬Ruptured(p) ∧ CSFailed(p).

51

Now, I give state evolution axiom for temporal fluent coreTemp(p, t, s).

Axiom 3.3.12.

coreTemp(p, t, s) = y

≡ [(γ1(p, s) ∧ δ1(p, t, s)) ∨ (γ2(p, s) ∧ δ2(p, t, s)) ∨ (γ3(p, s) ∧ δ3(p, t, s))

∨ (y = coreTemp(p, start(s), s) ∧ ¬(γ1(p, s) ∨ γ2(p, s) ∨ γ3(p, s)))].

That is, the value of coreTemp of p at time t in situation s is dictated by:

1. δ1 if both p’s cooling system has failed and its pipe was ruptured;

2. δ2 if p’s pipe was ruptured but its cooling system is working;

3. δ3 if p’s cooling system has failed but its pipe is intact; and

4. it remains the same as in start(s), otherwise.

Here, δi for i = 1, 2, 3 is defined as follows:

δi(p, t, s)
def
= coreTemp(p, t, s) = coreTemp(p, start(s), s) + (t− start(s))×∆i,

where, ∆i is the rate of change such that ∆1 = 100,∆2 = 35, and ∆3 = 55. The

above formula computes coreTemp(p, t, s) by adjusting the initial temperature at

start(s) based on the elapsed seconds t− start(s) and specifies a rate of temperature

increase, 100, 35, or 55 degrees per second, respectively, depending on the context

52

γi. For simplicity, I use these basic equations, but I could have used more realistic

differential equations to model temperature change as well.

We also need the following unique names axioms specifying that the different terms

represent different actions (again, these are required by the successor-state axioms):

Axiom 3.3.13.

a) rupture(p, t) = rupture(p′, t′) ⊃ p = p′ ∧ t = t′,

b) csFailure(p, t) = csFailure(p′, t′) ⊃ p = p′ ∧ t = t′,

c) fixP(p, t) = fixP(p′, t′) ⊃ p = p′ ∧ t = t′,

d) fixCS (p, t) = fixCS (p′, t′) ⊃ p = p′ ∧ t = t′,

e) mRadiation(p, t) = mRadiation(p′, t′) ⊃ p = p′ ∧ t = t′,

f) rupture(p, t) ̸= csFailure(p, t),

g) rupture(p, t) ̸= fixP(p, t),

h) rupture(p, t) ̸= fixCS (p, t),

i) rupture(p, t) ̸= mRadiation(p, t),

j) csFailure(p, t) ̸= fixP(p, t),

k) csFailure(p, t) ̸= fixCS (p, t),

l) csFailure(p, t) ̸= mRadiation(p, t),

m) fixP(p, t) ̸= fixCS (p, t),

n) fixP(p, t) ̸= mRadiation(p, t),

53

o) fixCS (p, t) ̸= mRadiation(p, t).

I assume that there is at least one nuclear power plant P1 in our domain, and add

the following initial state axioms for P1:

Axiom 3.3.14.

a) ¬Ruptured(P1, S0),

b) ¬CSFailed(P1, S0),

c) coreTemp(P1, start(S0), S0) = −50.

Henceforth, I use Dnpp to refer to the above axiomatization .

3.4 Actual Cause in the Situation Calculus

Recall that in Chapter 2, I discussed the limitations of existing approaches to

causation, underscoring the necessity for a more robust and expressive framework

to effectively model causation in dynamic domains. The study of causation in the

situation calculus is proposed as a solution to these challenges due to its ability to

model complex and dynamic domains effectively. In this section, I discuss the work

done on actual causality in discrete domains within the situation calculus. I use

this as a foundation to model actual causality within hybrid domains in subsequent

chapters.

54

3.4.1 Situation Calculus Semantics for Actual Causality

Batusov and Soutchanski [4] proposed a foundational definition of actual causes

based on situation calculus action theories. Later, Khan and Soutchanski [32] argued

using careful analysis of their proposal that it is possible to get rid of the disagree-

ments between different definitions of actual causality. In particular, they showed

that Batusov and Soutchanski’s account can be interpreted both as a regularity def-

inition and counterfactually. Batusov and Soutchanski proposed two kinds of causal

roles that events may assume: achievement causes, which are events that make the

condition of interest, i.e., the effect or its precondition true in whole or in part, and

maintenance causes, which are events that prevent other events from making the ef-

fect false again. They combined both types of events contributing to the existence of

the effect formula as actual causes.

Since all changes in the situation calculus stem from explicit events or actions,

the causes of an observed effect φ within a given scenario σ (action history/situation)

relative to a domain theory D must be actions from σ. These elements are combined

into the notion of causal setting in the situation calculus, relative to which causes will

be computed.

Definition 3.4.1 (Causal Setting). A causal setting is a tuple ⟨D, σ, φ⟩, where D is a

basic action theory, σ is a ground situation term such that D |= Executable(σ), and φ

is a situation-suppressed situation calculus formula uniform in s such that D |= φ[σ].

This requires the scenario σ to be executable and the effect φ to become true after σ is

55

executed starting in the initial situation S0. As mentioned, given a causal setting C =

⟨D, σ, φ⟩, causes are actions from the scenario σ. But since σ might include multiple

occurrences of the same action, to uniquely identify these actions, the situations where

these actions are performed also needed to be identified. Thus in this framework,

causes are action-situation pairs.

The idea behind how causes are computed is as follows. Given an effect φ and

scenario σ, if some action of the action sequence in σ triggers the formula φ to change

its truth value from false to true relative to D, and if there are no actions in σ after

it that change the value of φ back to false, then this action is an actual cause of

achieving φ in σ. Such causes are referred to as primary causes.

Definition 3.4.2 (Primary Achievement Cause). If a causal setting C = ⟨D, σ, φ⟩

satisfies the following achievement condition via the situation term do(α, σ′) ⊑ σ,

D |= ¬φ(σ′) ∧ ∀s. do(α, σ′) ⊑ s ⊑ σ ⊃ φ(s),

then α is a primary achievement cause in C.

Note that φ was false in situation σ′ and became true immediately in the next sit-

uation do(α, σ′) when α is executed in σ′, and then in all subsequent situations, it

remained true. This type of cause implies a direct link between the action and the

effect. This primary cause might have been non-executable initially in S0, and thus

may require other actions in its history to bring about its preconditions; also, it might

bring about the effect only conditionally (or partially), requiring the contribution of

56

other actions in its history to achieve the condition under which its execution brings

about the effect (or to fully achieve the effect, respectively). These actions whose con-

tributions were also necessary to achieve the effect are called secondary or indirect

causes.

To compute secondary causes, which are all the necessary actions leading to the

achievement of the effect, Batusov and Soutchanski [2] use the achievement condition

together with the single-step regression operator R. Formally, R[φ, α] represents the

weakest precondition necessary for φ to hold after performing action α in a previous

situation σ′. If α is established as an achievement cause of φ in do(α, σ′), R generates

a formula that is both necessary and sufficient for achieving φ via the execution of

α in σ′. Note that R[φ, α] may have its own achievement causes. Additionally, the

right-hand side of the action precondition axiom for α, i.e., Πα captures the conditions

required for α to be executed, which may have its own achievement causes as well.

In summary, if α is an achievement cause of φ in do(α, σ′), then (R[φ, α] ∧ Πα(s))

expresses the conditions necessary for executing α at σ′ and achieving φ via α. Using

this, secondary causes are defined as follows:

Definition 3.4.3 (Secondary Causes). If a causal setting C = ⟨D, σ, φ⟩ satisfies the

achievement condition via some situation term do(A(t), σ′) ⊑ σ and α is an achieve-

ment cause in the causal setting ⟨σ′, ρ[φ,A(t)] ∧ ΠA(t)⟩, then α is an achievement

cause in C.

Recall that the achievement condition requires the effect to be true at the end

57

of the scenario. Secondary causes do not capture all the events responsible for the

effect being true at the end of the scenario. They represent the actions responsible

for changing the effect from false to true but not those that prevent it from becoming

false again. Consider a scenario in which there exists an action capable of negating

φ, i.e., making φ false, after it was achieved by the primary cause. Such actions are

referred to as threat-actions to the effect. However, φ remains true because other

actions, which are called maintenance actions, counteract the threat and preserve the

effect. Maintenance causes may have their own achievement causes and subsequent

maintenance causes. Batusov and Soutchanski [4] define “actual causes” as a set of

actions that includes both types of causal roles: achievement causes (primary and

secondary causes) and maintenance causes. A detailed discussion of these topics is

beyond the scope of this thesis; interested readers are encouraged to refer to [4].

The achievement causal chain proposed in [4] builds on a first-order representation

of the dynamic world using the situation calculus and as such can deal with quantified

effects. For instance, one can query about the causes of all the blocks being broken,

i.e., ∀x.Broken(x). It utilized the regression operator along with achievement and

maintenance conditions to uncover a complete sequence of actions leading to the

condition of interest.

58

3.4.2 Embedding the Metatheoretic Account of Actual

Causes by Batusov and Soutchanski into the Language

of Situation Calculus

Batusov and Soutchanski [4] define actual causes using a syntactic regression op-

erator, while Khan and Lespérance [30] provide a refined semantic definition that

accounts for causation from an agent’s perspective, incorporating its knowledge. This

contrasts with earlier approaches focused solely on objective causation. They showed

that besides reasoning about causes and their effects, formalizing knowledge about

actual causes can be useful, especially in scenarios where a plan fails and needs to

be tailored again. In their framework, an agent can perform a sensing action to ac-

quire knowledge about the cause of an effect and re-evaluate the plan. This approach

accommodates epistemic causes and effects, allowing agents to analyze the origins of

newly acquired knowledge. For instance, an agent may trace the cause of newfound

knowledge to specific knowledge-producing actions, such as inform. They acknowl-

edge the uncertainty inherent in causal attribution where an agent may have partial

knowledge of causes while remaining uncertain about others. This sophisticated mod-

eling of causality enhances our understanding of agent behavior in complex scenarios,

especially in multi-agent systems. However, I restrict discussion to objective causality

only as my work in hybrid domains does not deal with epistemic effects.

Since causes are computed relative to a given scenario, it is assumed that the

scenario is executable, the effect was initially false before any action was executed,

59

and became true by the end of the scenario, i.e., in causal setting ⟨D, s, φ⟩, it must

be the case that:

D |= Executable(s) ∧ ¬φ[S0] ∧ φ[s]. (3.18)

As φ is required to hold by the end of the scenario s, they ignore the cases where φ is

not achieved by the actions in s, since if this is the case, the achievement cause truly

does not exist.

As discussed, s might include multiple occurrences of the same action. Hence,

one also needs to identify the situations where these actions were executed. To deal

with this, Khan and Lespérance required that each situation be associated with a

time-stamp, which is an integer for their theory. Since in the context of knowledge,

there can be different epistemic alternative situations (possible worlds) where an

action occurs, using time-stamps provides a common reference/rigid designator for

the action occurrence. They assumed that the initial situation starts at time-stamp 0

and each action increments the time-stamp by one. Thus, their action theory includes

the following axioms:

Axiom 3.4.1.

timeStamp(S0) = 0,

∀a, s, ts. timeStamp(do(a, s)) = ts ≡ timeStamp(s) = ts− 1.

60

With this, causes of a given effect φ in their framework is a non-empty set of action-

time-stamp pairs derived from the scenario s.

Khan and Lespérance [30] introduced dynamic formulae in the situation calculus,

where an effect φ is a situation-suppressed dynamic formula. The notation φ[s]

denotes that φ is true in situation s, with the situation argument restored in all

fluents in φ.

Definition 3.4.4 (Dynamic Formulae). Let φ range over situation-suppressed for-

mulae, x⃗ range over object terms, θa range over action terms, and y⃗ range over object

and action variables. The class of dynamic formulae φ is defined inductively using

the following grammar:

φ ::= P (x⃗) | Poss(θa) | After(θa, φ) | ¬φ | φ1 ∧ φ2 | ∃y⃗. φ.

That is, a dynamic formula can be of the following form:

1. P (x⃗), which is a situation-suppressed fluent.

2. Poss(θa), a formula that says that some action θa is possible to execute.

3. After(θa, φ), a formula that some dynamic formula holds after some action has

occurred.

4. ¬φ, a formula that does not hold.

5. φ1 ∧ φ2, if a conjunction of formulae holds.

61

Note that φ can have quantification over object and action variables, but must not

include quantification over situations or ordering over situations (i.e. ⊏).

φ[·] is defined as follows:

Definition 3.4.5.

φ[s]
def
=

P (x⃗, s) if φ is P (x⃗)

Poss(θa, s) if φ is Poss(θa)

φ′[do(θa, s)] if φ is After(θa, φ
′)

¬(φ′[s]) if φ is (¬φ′)

φ1[s] ∧ φ2[s] if φ is (φ1 ∧ φ2)

∃y⃗. (φ′[s]) if φ is (∃y⃗. φ′)

I now give Khan and Lespérance’s [30] definition of causes in the situation calculus.

The idea behind how causes are computed is as follows. Given an effect φ and scenario

s, if some action of the action sequence in s triggers the formula φ to change its truth

value from false to true relative to D, and if there are no actions in s after it that

change the value of φ back to false, then this action is a direct cause of achieving φ

in s. Such causes are referred to as primary causes.

62

Definition 3.4.6 (Primary Cause [30]).

CausesDirectly(a, ts, φ, s)
def
= ∃sa. timeStamp(sa) = ts ∧ (S0 < do(a, sa) ≤ s)

∧ ¬φ[sa] ∧ ∀s′.(do(a, sa) ≤ s′ ≤ s ⊃ φ[s′]).

That is, a executed at time-stamp ts is the primary cause of effect φ in situation

s if and only if a was executed in a situation with time-stamp ts in scenario s, a

caused φ to change its truth value to true, and no subsequent actions on the way to s

falsified φ. It is different from Batusov and Soutchanski’s definition of primary cause

(Definition 3.4.2) for the fact that it uniquely identifies actions based on time-stamps

attached to each situation.

The following definition can compute both primary and indirect causes, i.e., those

that made the primary cause executable or made the effect conditionally or partially

true.2

2In this, we need to quantify over situation-suppressed direct formula. Thus we must encode
such formulae as terms and formalize their relationship to the associated situation calculus formulae.
This is tedious but can be done essentially along the lines of [14]. We assume that we have such an
encoding and use formulae as terms directly.

63

Definition 3.4.7 (Actual Cause [30]).

Causes(a, ts, φ, s)
def
= ∀P.[∀a, ts, s, φ.(CausesDirectly(a, ts, φ, s) ⊃ P (a, ts, φ, s))

∧ ∀a, ts, s, φ.(∃a′, ts′, s′.(CausesDirectly(a′, ts′, φ, s)

∧ timeStamp(s′)= ts′ ∧ s′ < s

∧ P (a, ts, [Poss(a′) ∧ After(a′, φ)], s′)

⊃ P (a, ts, φ, s))

] ⊃ P (a, ts, φ, s).

Thus, Causes is defined to be the least relation P such that if a executed at time-step

ts directly causes φ in scenario s then (a, ts, φ, s) is in P , and if a′ executed at ts′

is a direct cause of φ in s, the time-stamp of s′ is ts′, s′ < s, and (a, ts, [Poss(a′) ∧

After(a′, φ)], s′) is in P (i.e. a executed at ts is a direct or indirect cause of [Poss(a′)∧

After(a′, φ)] in s′), then (a, ts, φ, s) is in P . Here the effect [Poss(a′) ∧ After(a′, φ)]

requires a′ to be executable and φ to hold after a′.

This inductive definition of causes can be used to handle trickier cases of condi-

tional effects, where some action can bring about an effect only when some condition

holds already. Next, I will give an example to illustrate how causes are computed by

using Khan and Lespérance’s definitions of direct and indirect causes.

64

3.4.3 Example - Causes in Discrete Case

I illustrate causation in the situation calculus using a variant of my running

Example presented in Section 3.3.4. Assume a situation calculus basic action the-

ory DSC
npp for this domain that only includes the atemporal variants of the ac-

tions, i.e., mRadiation(p), csFailure(p), and fixCS (p), the fluents CSFailed(p, s) and

Ruptured(p, s), and the associated initial state axioms, action precondition axioms,

successor-state axioms, and unique-names axioms; see Dnpp in Section 3.3.4. Within

this framework, consider causal setting C = ⟨DSC
npp , σ1, φ1⟩, where

σ1 = do([mRadiation(P1), csFailure(P1), fixCS (P1),mRadiation(P1),

csFailure(P1),mRadiation(P1)], S0),

and φ1 = CSFailed(P1, σ1), for some powerplant P1 (this is a constant). In Figure

3.1, I illustrate actions and their effect in scenario σ1.

¬φ1, S0

mRadiation(P1)

¬φ1, S1

csFailure(P1)

φ1, S2

fixCS(P1)

¬φ1, S3

mRadiation(P1)

¬φ1, S4

csFailure(P1)

φ1, S5

mRadiation(P1)

φ1, σ1

Figure 3.1: Causes in Discrete Case

According to Definition 3.4.6, I can show the following about direct cause in this

causal setting.

65

Proposition 1.

DSC
npp |= CausesDirectly(csFailure(P1), 4, φ1, σ1).

That is, csFailure(P1) executed at time-stamp 4 is a direct cause of φ1 in scenario σ1.

Proof sketch. In the following, I use S1 to represent do(mRadiation(P1), S0),

S2 to represent do(csFailure(P1), S1), etc. First, note that by Axiom 3.3.10(e),

mRadiation(P1) is executable in S0. By Axiom 3.3.11(b) (i.e., the successor-state

axiom of CSFailed), after this action is executed, we have: ¬φ[S1]. Also, by Axiom

3.4.1, we have: timeStamp(S1) = 1 . Using similar arguments, it can be shown that

each of the actions in the scenario σ1 was executable in their respective situation and

φ1 has the truth value exactly as shown in Figure 3.1. Also, it can be similarly shown

that timeStam(S4) = 4 .

According to Definition 3.4.6, the last action that made the effect φ1 from false

to true and after which the effect persists is a primary cause. Hence, by the above

argument, csFailure(P1) executed at time-stamp 4 is the direct cause of φ1.

Moreover, I can show the following result about (possibly indirect) causes.

Proposition 2.

DSC
npp |= Causes(csFailure(P1), 1, φ1, σ1)

∧ Causes(fixCS (P1), 2, φ1, σ1) ∧ Causes(csFailure(P1), 4, φ1, σ1).

66

Proof sketch. Explaining backward, since by Proposition 1 the second

csFailure(P1) action executed at time-stamp 4 is a direct cause of φ1 in σ1, by Defini-

tion 3.4.7 it is also a cause of φ1 in σ1. Now, it can be shown that fixCS (P1) executed at

timeStamp 2 is a direct cause of φ2 = Poss(csFailure(P1)∧After(csFailure(P1), φ1))

in S4, and thus by Definition 3.4.7, it is also a cause of φ1 in σ1. Finally, it

can be shown that csFailure(P1) executed at timeStamp 1 is a direct cause of

φ3 = Poss(fixCS (P1) ∧ After(fixCS (P1), φ2)) in situation S2, and thus by Defini-

tion 3.4.7, it is also a cause of φ1 in σ1.

3.5 Counterfactual Worlds in Situation Calculus

Counterfactual worlds refer to the worlds that would have been realized had ac-

tions/events been different from what actually occurred. These capture hypothetical

or contrary-to-fact properties that can be used to explore the consequences of actions

in different scenarios. In the context of causation, counterfactuals are often used to

justify causal relationships. For example, if event A causes event B (or in our case,

the effect φ), a counterfactual statement could be: “If event A had not occurred, then

event B (the effect φ) would not have happened (be observed).” Such a statement

utilizes the counterfactual scenarios where A did not happen, and helps us reason

about the causal impact of specific events, in this case, A. While the Definition 3.4.7

of actual cause appeals to the intuition of causation, others contend that causation

should be defined using counterfactuals [27, 26]. In this section, I first give a definition

67

of what it means for a situation to be counterfactual to another. I then show why a

“but for” counterfactual analysis does not work for causes defined in 3.4.7, i.e., study

the preemption problem (see Theorem 3.5.2). Note that this is a new contribution to

this thesis.

3.5.1 Defining Counterfactual Situations

My notion of counterfactual situations assumes that actions from the given situa-

tion are replaced with a different action to produce counterfactual situations. First, I

define counterfactual situations that differ from a given situation only by one action.

Definition 3.5.1 (Single-Action Counterfactual Situation).

CF one(s
′, s)

def
= ∃a1, a2, ssh . a1 ̸= a2 ∧ do(a1, ssh) ⊑ s ∧ do(a2, ssh) ⊑ s′

∧ ∀a∗, s∗. do(a1, ssh) ⊏ do(a∗, s∗) ⊑ s

⊃ (∃s+. timeStamp(s∗) = timeStamp(s+) ∧ do(a∗, s+) ⊑ s′)

∧ ∀a∗, s∗. do(a2, ssh) ⊏ do(a∗, s∗) ⊑ s′

⊃ (∃s+. timeStamp(s+) = timeStamp(s∗) ∧ do(a∗, s+) ⊑ s).

That is, given a situation s, another situation s′ is counterfactual to s and differs

from s by just one action if and only if s and s′ share a common situation ssh in

their history, the actions performed in the history of s and s′ in the situation ssh

are different, but all other actions in their history (performed before and after ssh)

68

are exactly the same. Here, we use the function timeStamp(s) to ensure that the

subsequent actions after the unmatched one are performed in exactly the same order

in both histories. Note that, since ssh is a common situation in the history of both s

and s′, it trivially follows that all actions performed in the history of these scenarios

until ssh must be exactly the same.

I will next define a general notion of counterfactual situations. For this, I will

use a variant of CF one , CF one(s
′, s, ⟨a′, a, ts⟩), that makes a = a1, a

′ = a2, and

ts = timeStamp(ssh) explicit (these are stored as a triple). Using this, I define

counterfactual situations as follows.3

Definition 3.5.2 (Counterfactual Situation).

CF (s′, s, L)
def
= ∀P.[. . . ⊃ P (s′, s, L)],

where . . . stands for

∀s′, s, a′, a, ts.[CF one(s
′, s, ⟨a′, a, ts⟩) ⊃ P (s′, s, [⟨a′, a, ts⟩])] ∧

∀s′′, s, L′.[∃s′, a′, a′′, ts, L.(CF one(s
′′, s′, ⟨a′′, a′, ts⟩) ∧ P (s′, s, L) ∧ L′ = cons(⟨a′′, a′, ts⟩, L)

∧ ∀a′1, a1, ts1, a′2, a2, ts2.(⟨a′1, a1, ts1⟩ ∈ L′ ∧ ⟨a′2, a2, ts2⟩ ∈ L′) ⊃ ts1 ̸= ts2)

⊃ P (s′′, s, L′)],

where cons is a standard list function that appends an element to the front of a

list. Formally, given an element, in our case ⟨a′′, a′, ts⟩, and a list L, the function

cons(⟨a′′, a′, ts⟩, L) constructs a new list with ⟨a′′, a′, ts⟩ as the head (first element)

3Here, I use the standard list operation cons for constructing a new list from an item and a list,
so I assume that our theory includes an axiomatization of lists.

69

and L as the tail (remaining elements).

That is, CF is defined to be the least relation P such that if the counterfactual

situation s′ can be obtained from s by replacing action a executed at time stamp ts

with a′, then (s′, s, L) is in P , where L is a list that only includes the triple ⟨a′, a, ts⟩;

and if s′′ can be obtained from s′ by replacing a′ executed at time stamp ts with a′′,

(s′, s, L′) is in P , L′ is the list that can be constructed from triple ⟨a′′, a′, ts⟩ and list

L, and each pair of triples in L′ has a different time stamp argument, then (s′′, s, L′)

is in P . Note that this does not allow us to obtain a counterfactual situation by

replacing actions in the same position twice (as it requires that each triple in the list

L′ must have a unique time-stamp).

Finally, I also define executable variants that ensure that the counterfactual situ-

ation obtained is executable.

Definition 3.5.3 (Executable CF one).

CFEx one(s
′, s, ⟨a′, a, ts⟩) def

= CF one(s
′, s, ⟨a′, a, ts⟩) ∧ Exectuable(s′).

Definition 3.5.4 (Executable Counterfactual Situation).

CFEx (s′, s, L)
def
= CF (s′, s, L) ∧ Exectuable(s′).

Before I can give a theorem on how preempted actions can still bring about the

effect when a cause is replaced with a noOp action which is an action that is always

70

possible to execute and has no effects, I must state the action precondition axiom for

the noOp action.

Axiom 3.5.1.

Poss(noOp, s) ≡ true.

With this, I can show the following result:

Theorem 3.5.2. [Preempted Contribution]

D ⊭ Causes(a, ts , ϕ, s) ⊃ ¬∃s′. CFEx one(s
′, s, ⟨noOp, a, ts⟩) ∨ ¬ϕ(s′).

Thus, it is not guaranteed that if a executed in timeStamp ts is a cause of φ

in scenario s, then either an executable counterfactual situation to s obtained by

replacing a at ts by noOp does not exist, or the effect φ can no longer be observed

in such a counterfactual scenario s′. This indicates that removing the cause will not

necessarily make the effect disappear or render the scenario non-executable, as the

effect might still follow due to preempted contributors occurring later in the scenario,

i.e., actions that would have brought about the effect in the original scenario s had

it not for the actual cause a.

Proof of Theorem 3.5.2 (By counter-example). This uses our running example’s

discrete variant in Section 3.4.3 with domain theory DSC
npp . Consider a causal setting

⟨DSC
npp, φ2, σ2⟩, where the effect φ2 and the scenario σ2 are defined as follows (illustrated

71

in Figure 3.2):

φ2 = Ruptured(P1, σ2),

σ2 = do([rupture(P1),mRadiation(P1), fixP(P1), rupture(P1), rupture(P1)], S0).

¬φ2, S0

rupture(P1)

φ2, S1

mRadiation(P1)

φ2, S2

fixP(P1)

¬φ2, S3

rupture(P1)

φ2, S4

rupture(P1)

φ2, σ2

Figure 3.2: Single Action Counterfactual Analysis on Direct Cause

According to Definition 3.4.7, we can show the following result about causes.

Proposition 3.

DSC
npp |= Causes(rupture(P1), 0, φ2, σ2)

∧ Causes(fixP(P1), 2, φ2, σ2) ∧ Causes(rupture(P1), 3, φ2, σ2).

Let us replace the primary cause rupture(P1) executed at time-stamp 3 with noOp

action in the scenario σ2, and call this counterfactual scenario σ′
2, which is illustrated

in Figure 3.3 below.

σ′
2 = do([rupture(P1),mRadiation(P1), fixP(P1), noOP(), rupture(P1).

¬φ2, S0

rupture(P1)

φ2, S1

mRadiation(P1)

φ2, S2

fixP(P1)

¬φ2, S3

noOp()

¬φ2, S4

rupture(P1)

φ2, σ′
2

Figure 3.3: Single Action Counterfactual Analysis on Direct Cause

72

The scenario σ′
2 is executable as the rupture and noOp actions are possible to execute

according to Axioms 3.3.10(a) and 3.5.1. It is also easy to verify using Axiom 3.3.11(a)

that the effect still holds at the end of σ′
2. Thus

DSC
npp |= CFEx one(σ

′
2, σ2, ⟨noOp, rupture(P1), 3⟩) ∧ φ2[σ

′
2].

In this section, I defined the notions of single-action and multiple-action coun-

terfactual situations relative to a given scenario. Through an illustrative example, I

highlighted the issue of preemption when defining causes based on counterfactual sce-

narios and “but for” analysis. Note that I could have removed all preempted causes

from the scenario before checking if the effect still follows, and thus a variant of “but

for” cause analysis might still work. I will return to this issue when discussing the

temporal case in Chapter 5, which is the main focus of this thesis.

3.6 Conclusion

In this chapter, I reviewed previous work on formalizing dynamic domains, focus-

ing on the situation calculus as a tool for reasoning about actions and their effects.

I discussed the hybrid temporal situation calculus, an extension that accommodates

both discrete and continuous change, which will be foundational for defining the

notion of primary cause in hybrid dynamic domains in Chapter 4. Additionally, I

73

examined the formalization of achievement causes in discrete domains within the sit-

uation calculus. After discussing the proposal by Batusov and Soutchanski [4], and

the embedding by Khan and Lespérance [30], I proposed a definition of counterfactual

worlds, which will be extended to hybrid domains in Chapter 5.

74

Chapter 4

A Foundational Definition of Primary

Achievement Cause in Hybrid Dynamic

Domains

4.1 Introduction

Motivated by the hybrid nature of real-world actions and their effects, in this

chapter, I study causation in the hybrid temporal situation calculus. As discussed in

the previous chapter, while others have explored causation in the situation calculus,

these approaches are limited to discrete domains. In contrast, in hybrid domains,

changes can be both discrete and continuous.

I start by defining a notion of a proper hybrid causal setting. Following this,

I examine causal settings where the effect is a primitive atemporal fluent, as well

as those where it refers to a primitive temporal fluent, and thus my main proposal

75

here focuses on primitive effects exclusively. My proposal is based on Khan and

Lespérance’s definition of primary cause [30]. In addition, I also (informally) hint

at how my definition of primary cause can be extended to cover effects consisting

of conjunctions and disjunctions of two or more primitive temporal fluents. I use a

simple nuclear power plant example to illustrate my definition of primary cause and

its conjunctive and disjunctive variants.

In the subsequent section, I also explore some basic properties of my definition,

including one that identifies the conditions under which the primary cause persists.

To support our discussion, I use an example to illustrate these properties.

4.2 Setting the Stage

Causal Setting

I now define a notion of causal setting in the hybrid temporal situation calculus.

Definition 4.2.1 (Hybrid Temporal Achievement Causal Setting). A hybrid tem-

poral achievement causal setting is a tuple ⟨D, σ, φ⟩, where D is a hybrid temporal

situation calculus basic action theory, σ ̸= S0 is a ground situation term of the form

do([α1, . . . , αn], S0) with non-empty sequence of ground action functions α1, . . . , αn,

and φ is a situation-suppressed (possibly temporal, and in that case, time-suppressed)

situation calculus formula that is uniform in s such that:

D |= Executable(σ) ∧ ¬φ[start(S0), S0] ∧ ¬φ[time(α1), S0] ∧ φ[start(σ), σ].

76

Thus if ⟨D, σ, φ⟩ is a hybrid temporal achievement causal setting (hybrid setting,

henceforth), then the scenario σ must be executable, the effect φmust be false initially

and must remain false till the end of initial situation S0, and φ is assumed to be true

at the beginning of the final situation, i.e., σ. Note that in hybrid temporal situation

calculus, it is possible for some context to be true initially in S0, and in that case, the

effect can be achieved between the start and end times of the initial situation without

requiring contribution from any action in the scenario. To rule out such cases, my

definition requires the effect φ to be false at the beginning and at the end of the

initial situation S0. As we will see later, this restriction is not strong enough, and in

some contexts it is indeed still possible for an effect to become true despite having no

contributing actions, e.g., when the context that brought about the effect was true

initially.

To ensure that the effect is actually achieved within the scenario, I also require

the effect to be true when observed at the beginning of σ. In a hybrid domain, in

general, one can query the causes of an observed effect at any time-point within a

situation σ, i.e. at any time-point in between the start-time and the end-time of σ,

inclusive. To simplify, I assume that the query is posed relative to the starting time

of σ (as enforced by Definition 4.2.1). If this is not the case, one can always add

a subsequent dummy action, noOp (which has no effect and is always possible to

execute), and query with respect to the updated scenario do(noOp, σ), and hybrid

setting ⟨D, do(noOp, σ), φ⟩.

In my framework, φ is a situation- and time-suppressed hybrid temporal situation

77

calculus formula. The exact nature of φ is irrelevant for the task at hand as in this

thesis I only deal with primitive atemporal fluents and conditions on the values of

primitive temporal fluents (e.g. coreTemp(P) > 1000) and restricted extensions of

these as effects. From now on, I will write φ[t, s] to denote the formula obtained from

φ by restoring the appropriate situation and time arguments into the only fluent

in φ, and thus, for example, coreTemp(P1)[5, S0] stands for coreTemp(P1, 5, S0). As

discussed above, a hybrid setting does not necessarily guarantee that the causes of the

associated (temporal) effect can always be computed as these might still be implicit

in the initial situation, e.g., when the context that brought about the effect was true

initially and remained true until the achievement of the effect; we will return to this

issue later in Theorem 4.5.4.

One last point: when the effect is atemporal, the time arguments in Definition

4.3.1 above are simply ignored and the definition of hybrid setting resembles that of

a causal setting in the situation calculus.

Atemporal Primitive Fluents as Effects.

I next consider defining primary achievement cause relative to a hybrid setting,

where the effect is a primitive atemporal fluent. Since we already have a notion

of time associated with every situation in the hybrid temporal situation calculus

(see Axiom 3.3.2 in Chapter 3), it seems natural to adopt this instead of Khan and

Lespérance’s [30] time-stamp. However, one issue with this approach is that, because

actions in hybrid temporal situation calculus are instantaneous, multiple actions can

78

occur at the same time-point. Consequently, the execution time of an action a,

represented using time(a), cannot be used to uniquely identify the action within a a

given scenario/trace. Therefore, I adopt Khan and Lespérance’s time stamps and as a

result, for defining causes of atemporal primitive fluents, their Definition 3.4.6 above.

I require that φ in this case be some suitable subclass of hybrid temporal situation

calculus formulae.

Temporal Primitive Fluents as Effects.

For discrete effects, the primary cause, which is an action a executed at time-point

t, brings about the effect discretely and immediately after the execution of a at t. For

the temporal case, however, the effect might be only realized after a while, and one or

more irrelevant actions might be executed in between. For example, if one changes the

temperature on a thermostat, the desired room temperature will likely be achieved

after some time has passed, but in between there can be other irrelevant actions that

might be executed, those that have no impact on the value of the room temperature.

Thus, while defining the primary achievement cause, in addition to actions causing

the change in a temporal fluent’s value, we need to identify the situation where the

effect was actually achieved within the scenario.

79

4.3 Primary Achievement Cause: The Primitive Case

4.3.1 Intuition and Definition

Let me start with the intuition behind my definition. Recall that in hybrid tem-

poral situation calculus, the values of temporal fluents can change only when certain

relevant contexts are enabled. Contexts for a temporal fluent, which are (mutually

exclusive) discrete fluents, on the other hand are enabled or disabled due to the exe-

cution of actions. Thus, when determining the primary cause of some temporal fluent

having a certain value, we first need to identify the last context γ that was enabled

before the fluent acquired this value, i.e., the context γ which was true in the achieve-

ment situation sφ of the effect φ, and then figure out the action a that caused/enabled

this context in sφ. Since contexts are mutually exclusive (no two contexts can be true

at the same time), γ must have been the only enabled context in the achievement sit-

uation sφ, which ensures that the action a is unique. Additionally, a must have been

the last action that enabled γ, and whose contribution brought about the temporal

effect under consideration.1

In the following, I give the definition of primary cause relative to a hybrid causal

setting ⟨D, σ, φ⟩. In this, the effect φ is a constraint on the values of a situation-

and time-suppressed primitive temporal fluent f(x⃗). Also, γf
i refers to the contexts

δi(x⃗, y, t, s), indexed by i, that are associated with the temporal fluent f (see state

1There can certainly be other secondary/indirect causes, but I am only concerned with primary
causes in this thesis.

80

evolution axioms defined in Section 3.3.2 above).

Definition 4.3.1 (Primary Achievement Cause (Primitive Temporal Case)).

CausesDirectlyprim
temp (a, ts, φ, s)

def
=

∃sφ. AchvSit(sφ, φ, s) ∧ ∃i. CausesDirectly(a, ts, γf
i , sφ).

That is, an action a executed at time-stamp ts directly causes the effect φ in scenario

s if and only if the achievement situation of φ in s is sφ, and a executed in some

earlier situation with time-stamp ts directly caused the active context γf
i for the

temporal fluent f mentioned in φ in scenario sφ. Here, CausesDirectly(a, ts, γf
i , sφ)

is the same as defined by Khan and Lespérance (see Definition 3.4.6). Note that,

CausesDirectly(a, ts, γf
i , sφ) implies that the context γf

i holds in sφ, i.e., γ
f
i [sφ], and

thus it is indeed the (unique) context that was active in sφ. Since contexts are

mutually exclusive, we do not need to check whether a subsequent action executed

after a made another context true before the achievement of the effect in situation

sφ.

Achievement Situation

I now formally define the achievement situation2. First, let me define a function

that provides the end time of a situation s′ within a given scenario s. Since it is not

directly possible to talk about the end time of a situation in the hybrid temporal

2A variant of this definition appeared in our award-winning Canadain AI 2024 paper [42], which
I later found to be problematic/incomplete; the following definition fixes the issue.

81

situation calculus (as the end time does not really exist when the scenario is not

known), I will use the start time of the next action within the scenario to denote this.

Definition 4.3.2 (End Time of a Situation within a Context).

end(s′, s)
def
=

start(s′) if s′ = s

time(a) if ∃a. do(a, s′) ≤ s

That is, the end time of a situation s′ in scenario s is the starting time of s′ if s′ is

the last situation in scenario s, or the time of the execution of the next action a in s′

within scenario s, i.e., time(a) such that do(a, s′) ≤ s. Note that, since my definition

of hybrid setting guarantees that causes are computed relative to the starting time

of the scenario, taking the starting time of s′ as the end time of it is reasonable when

s′ = s. Also, while in what follows, I mention that the end time of the situation

comes “right before” the execution time of the next action on the trace, note that in

reality, these two times are the same.3

To define the achievement situation, observe that the effect φ must be true at the

end of the achievement situation and must remain true in all subsequent situations and

times. But since there can be multiple situations in between the achievement situation

and the final situation in the scenario, we must also ensure that the achievement

situation is the earliest such situation to uniquely identify it. The following definition

captures this intuition.

3This is not to say that we allow concurrent actions.

82

Definition 4.3.3 (Achievement Situation).

AchvSit(sφ, φ, s)
def
=

φ[end(sφ, s), sφ] ∧ ∀s′, t. sφ < s′≤ s ∧ start(s′) ≤ t ≤ end(s′, s) ⊃ φ[t, s′]

∧ (¬∃s′′. s′′< sφ ∧ φ[end(s′′, s), s′′] ∧ ∀s′, t. s′′< s′≤ s ∧ start(s′) ≤ t ≤ end(s′, s)

⊃ φ[t, s′]).

That is, sφ is the achievement situation of the effect φ in scenario s if and only if

φ holds at the end of the situation sφ, and φ continues to hold in all subsequent

situations s′ and time points t between start(s′) and end(s ′, s). Additionally, there

must not exist another preceding situation s′′ before sφ that satisfies these conditions.

This ensures that sφ is the earliest situation in which φ is achieved and maintained

till the start of the scenario s.

4.4 Handling Compound Effects

So far, I have only dealt with “primitive” temporal effects, i.e., effects with con-

ditions on the value of a single temporal fluent. In this section, I present preliminary

work aimed at identifying the primary cause for disjunction and conjunction of two

primitive temporal fluents. Later in Section 4.6, I will provide examples to illustrate

these definitions.

83

Conjunction of Primitive Temporal Fluents

First, consider an effect of the form of φa ∧ φb, where φa and φb are primitive

temporal effects. Suppose there exists an action a executed at timestamp ta that

directly causes φa, and another action b executed at timestamp tb that directly causes

φb. I call action a a direct cause of (φa ∧ φb) if and only if a is executed after b, i.e.,

tb ≤ ta. Recall that the primary cause is the most recent action responsible for the

achievement of the effect. Since achieving (φa ∧ φb) requires both φa and φb to be

true, the action with the later timestamp—in this case, action a—must be considered

as the direct cause. Note that when ta = tb, a and b must refer to the same action.

This yields the following definition.

Definition 4.4.1 (Primary Cause of Conjunction of Temporal Effects).

CausesDirectlytemp(a, ta, φa ∧ φb, s)
def
= ∃b, tb. CausesDirectlyprim

temp (a, ta, φa, s)

∧ CausesDirectlyprim
temp (b, tb, φb, s) ∧ tb ≤ ta.

Disjunction of Primitive Temporal Fluents

In the case of a disjunction where the effect is of the form φa ∨ φb, where φa and

φb are primitive temporal fluents, it is possible that the overall effect (φa ∨ φb) can

be brought about/caused by the achievement of φa or φb alone. Similarly, it is also

possible for the overall effect to be brought about by the simultaneous achievement

of φa and φb. Consequently, taking the most recent action, say a, that achieved a

84

context γf
a related to the fluent in φa to be the primary cause is problematic as it is

possible that the overall effect was actually caused by the achievement of φb (and not

that of φa). For instance, consider a scenario where action b is the latest action that

enabled a context for φb, but φb never became true, and (φa ∨ φb) was ultimately

achieved because φa became true as a result of an earlier action a (see Example

4.6.4). Here, although a occurred before b, a is indeed the cause for the effect. This

observation suggests the following definition.

Definition 4.4.2 (Primary Cause of Disjunction of Temporal Effects).

CausesDirectlytemp(a, ta, φa ∨ φb, s)
def
=

∃sa. CausesDirectlyprim
temp (a, ta, φa, s) ∧ AchvSit(sa, φa, s)

∧ [∃sb, b, tb. CausesDirectlyprim
temp (b, tb, φb, s) ∧ AchvSit(sb, φb, s)

⊃ (sa < sb ∨ (sa = sb ∧ tb < ta))].

That is, an action a is the primary cause of φa ∨ φb if and only if a executed at time

ta is the direct cause of φa, sa is the achievement situation of φa, and if φb was also

achieved and thus has the achievement situation sb, then either sa is earlier than sb

(i.e., sa < sb), or φb has the same achievement situation as φa (i.e., sa = sb) and a

was executed after b (i.e., tb < ta).

The ideas presented above are preliminary and I plan to study these definitions

and look into their consequences in the future.

85

4.5 Properties

I now prove some intuitive properties of my formalization of primary cause. First,

given a causal setting, the direct causes of discrete effects are unique.

Lemma 4.5.1 (Uniqueness of Direct Cause). Given a causal setting ⟨D, φ, s⟩, it

follows that:

D |= ∀a, a′, ts, ts′. CausesDirectly(a, ts, φ, s) ∧ CausesDirectly(a′, ts′, φ, s)

⊃ a = a′ ∧ ts = ts′.

Proof. Follows directly from Definition 3.4.6.

Next, the achievement situation for a given hybrid setting is unique.

Lemma 4.5.2 (Uniqueness of Achievement Situation). Given a hybrid setting

⟨D, φ, s⟩, we have:

D |= AchvSit(sφ, φ, s) ∧ AchvSit(s′φ, φ, s) ⊃ sφ = s′φ.

Proof. Follows trivially from Definition 4.3.3.

Moreover, the direct cause of primitive temporal fluents is unique.

Theorem 4.5.3 (Uniqueness of Primary Cause of Temporal Effects). Given a hybrid

86

setting ⟨D, φ, s⟩, we have:

D |= CausesDirectlyprim
temp(a1, ts1, φ, σ) ∧ CausesDirectlyprim

temp(a2, ts2, φ, σ)

⊃ a1 = a2 ∧ ts1 = ts2.

This says that if action a1 executed at time-stamp ts1 is a direct cause of effect φ in

scenario σ, and action a2 executed at time-stamp ts2 is also a direct cause of φ in σ,

then a1 and a2 must refer to the same action, and ts1 must be equal to ts2.

Proof. Follows from the definition of primary achievement cause (Definition 4.3.1),

the uniqueness of the achievement situation sφ (Lemma 4.5.2), the mutual exclusivity

of contexts (Axiom 3.3.4), and the uniqueness of direct causes (Lemma 4.5.1).

Next, as mentioned above, the primary causes of primitive temporal fluents might

not exist (as it may be implicit in the initial situation S0). This holds even if the

causal setting under consideration is a proper hybrid setting (as specified by Definition

4.2.1). To see this, assume that a context was already enabled in the initial situation,

capturing an ongoing change; then without requiring the contribution of any relevant

actions in the scenario, this context can independently achieve the effect if it is not

disabled before the achievement of the effect and if this achievement is maintained

till the end of the trace. I illustrate this in Example 4.6.5.

Theorem 4.5.4 (Implicit Primary Cause). Assume that φ is a constraint on the

87

value of a primitive temporal fluent f . Then we have:

D |= (ProperHTSCAchvCausalSetting(φ, σ)

∧ ∃sφ. AchvSit(sφ, φ, σ) ∧ ∃i. γf
i [sφ] ∧ (∀s′. S0 ≤ s′ ≤ sφ ⊃ γf

i [s
′])

⊃ ¬∃a, ts. CausesDirectlyprim
temp(a, ts, φ, σ)),

where,

ProperHTSCAchvCausalSetting(φ, σ)
def
= Executable(σ)

∧∃a0. do(a0, S0) ≤ σ ∧ ¬φ[start(S0), S0] ∧ ¬φ[time(a0), S0] ∧ φ[start(σ), σ].

This states that in a given proper hybrid causal setting ⟨D, σ, φ⟩, if there exists a

context γf
i such that γf

i was true in the initial situation S0 and remained true until

the effect φ was achieved in the achievement situation sφ in σ, then the primary cause

of temporal effect φ in σ simply does not exist.

Proof (by contradiction). Fix φ1, σ1, sφ1 , γ
f
i1
and assume that:

AchvSit(sφ1 , φ1, σ1) ∧ γf
i1
[sφ1], (4.19)

∀s′.S0 ≤ s′ ≤ sφ1 ⊃ γf
i1
[s′]. (4.20)

Fix a1 and ts1 and also assume that:

CausesDirectlyprim
temp(a1, ts1, φ1, σ1). (4.21)

88

Now, note that by 4.19 and Lemma 4.5.2, the achievement situation sφ1 is unique.

Thus by Axiom 3.3.4 (which guarantees that the contexts are mutually exclusive) and

the definition of primary achievement cause in primitive temporal case (Definition

4.3.1), we have:

CausesDirectly(a1, ts1, γ
f
i1
, sφ1). (4.22)

But this is contradictory to 4.20 and the definition of direct cause (Definition 3.4.6).

Finally, I study the conditions under which primary achievement causes persist

when the scenario changes. To this end, I first show a result about the persistence of

achievement situations.

Lemma 4.5.5. Given a hybrid setting ⟨D, φ, s⟩, we have:

D |= AchvSit(sφ, φ, s) ∧ s < s∗

∧ (∀s′, t. s ≤ s′ ≤ s∗ ∧ start(s′) ≤ t ≤ end(s′, s∗) ⊃ φ[t, s′])

⊃ AchvSit(sφ, φ, s
∗).

Proof. Follows from antecedent and Definition 4.3.3.

Note that by Definition 4.3.3, the achievement situation is the earliest situation where

the effect becomes true and remains true thereafter. It is not difficult to see that if the

89

scenario is extended and the effect remains true throughout the extended scenario,

the achievement situation remains the same in the extended scenario. Using this, I

can show the following result.

Theorem 4.5.6 (Persistence). Given a hybrid setting ⟨D, φ, s⟩, we have:

D |= CausesDirectlyprim
temp (a, ts, φ, s)

∧ (∀s′, t′. s ≤ s′ ≤ s∗ ∧ start(s′) ≤ t′ ≤ end(s′, s∗) ⊃ φ[t′, s′])

⊃ CausesDirectlyprim
temp (a, ts, φ, s

∗).

That is, if an action a executed at time-stamp ts is the primary cause of a temporal

effect φ in scenario s, then a remains the primary cause of φ in all subsequent situ-

ations/scenarios s∗ as long as φ does not change after it is achieved in s. Note that

this holds even if the context changes and the value of the associated fluent f in φ

varies, provided that φ itself remains unchanged.

Proof. By Lemma 4.5.5 and the antecedent, the achievement situation sφ in s and

s∗ remains the same. The property thus follows from this, the definition of Primary

Achievement Cause in Primitive Temporal Case (Definition 4.3.1), the uniqueness

of achievement situations (Lemms 4.5.2), the mutual exclusivity of contexts (Axiom

3.3.4), and the uniqueness of direct cause (Lemma 4.5.1), which together ensures that

the unique context associated with the unique achievement situation sφ in s and s∗

is unique.

90

4.6 Examples

To illustrate the proposed definition of primary cause for primitive temporal case

and its conjunctive and disjunctive variants, in this Section, I will present three

examples using domain theory Dnpp and Dnpp2 . I conclude with an example where

the primary cause is implicit in a proper hybrid causal setting.

4.6.1 Example: The Primitive Temporal Case

First, I give an example of the primitive temporal case, where the effect is simply

a constraint on the values of a single primitive temporal fluent. Consider the causal

setting ⟨Dnpp, φ3, σ3⟩, where the effect φ3 and the scenario σ3 are defined as follows:

φ3
def
= coreTemp(P1) ≥ 1000,

σ3 = do([rupture(P1, 5), csFailure(P1, 15),mRadiation(P1, 20), fixP(P1, 26)], S0).

Recall that, the last argument of each action represents the execution time of that

action. This scenario is depicted in Figure 4.1, which also shows the temperature at

the beginning and at the end of each situation for clarity.

91

−50◦, S0

−50◦, S0

rupture(P1, 5)
φ2 = −50◦, γ2, S1

300◦, γ2, S1

csFailure(P1, 15)
300◦, γ1, S2

800◦, γ1, S2

mRadiation(P1, 20)
800◦, γ1, S3

1000◦, φ3

1400◦, γ1, S3

fixP(P1, 26)
1400◦, γ3, σ3

Figure 4.1: Primary Cause in Hybrid Domains: Primitive Case

In this domain, it can be shown that:

Proposition 4.

Dnpp |= CausesDirectly(csFailure(P1, 15), 1, γ1, S3).

Proposition 5.

Dnpp |= CausesDirectlyprim
temp(csFailure(P1, 15), 1, φ3, σ3).

The given causal setting is a proper achievement causal setting because all actions

in the scenario are executable in the order of their execution. Initially, the core

temperature is −50◦, and by the end of the scenario, it reaches 1400◦, thus satisfying

the achievement condition.

92

Proof. By Axiom 3.3.14(a) and (b), since no contexts among γ1, γ2, γ3 were active

in S0, by Axiom 3.3.12 and 3.3.14(c) the temperature of P1 remains −50◦ in S0 at

time 5.

In situation S0, the rupture(P1, 5) action is executed at time 5. Accord-

ing to Axiom 3.3.10(a), this action was executable in S0. Moreover, as speci-

fied in Axiom 3.3.11(a) its execution makes Ruptured(P1, S1) true, where S1 =

do(rupture(P1, 5), S0). Moreover, by Axiom 3.3.14(b) and 3.3.11(b), we have

¬CSFailed(do(rupture(P1, 5), S0)). Thus in this situation, the context γ2 is true. By

Axiom 3.3.12, this initiates the increase in coreTemp as per δ2, i.e., the temperature

changes 35◦ per second. The core temperature thus reaches 300◦ at time 15.

Next, the csFailure(P1, 15) action is executed. As shown above, ¬CSFailed(P1, S1)

holds. Consequently, csFailure(P1, 15) was possible to execute as per Axiom 3.3.10(c).

After the action csFailure(P1, 15) is executed at time 15, as specified by Axiom

3.3.11(b), CSFailed(P1, S2) becomes true, where S2 = do(csFailure(P1, 15), S1). In

addition, Ruptured(P1, S2) also holds, which activates the γ1 context. By Axiom

3.3.12, this action continues to change the coreTemp, but with a different rate of

change (i.e., ∆1 = 100). The core temperature thus reaches 800◦ at time 20.

After the execution of the mRadiation(P1, 20) action which was also possible to

execute according to Axiom 3.3.10(e), Ruptured(P1, S3) and CSFailed(P1, S3) continue

to hold according to Axiom 3.3.11(a) and (b) and thus the context (γ1) remains the

same and so does the change rate. The effect φ3 is achieved within situation S3,

where S3 = do(mRadiation(P1, 20), S2).

93

coreTemp continues to change with ∆1 rate and reaches 1400 as γ1 is still active.

After rupture(P1, 5) is executed in situation S0, we have Ruptured(P1, S1), and after

the execution of csFailure(P1, 15) and mRadiation(P1, 20), we have Ruptured(P1, S3),

as specified in Axiom 3.3.11(b). Finally, the fixP(P1, 26) action is also possible to

execute in situation S3 as per Axiom 3.3.10(c), which requires Ruptured(P1, S3) for

its execution. As per Axiom 3.3.12 and 3.3.11(a) the context γ3 becomes active in σ3.

The execution of all action in σ3 resembles that shown in Figure 4.1. Thus, by

definition of AchvSit , it follows that:

Dnpp |= AchvSit(S3, φ3, σ3) ∧ γ1[S3]. (4.23)

According to the definition of the primary cause for primitive temporal case (Def-

inition 4.3.1), the direct cause (see Definition 3.4.6) of context γ1 is the primary cause

of the effect φ3. It can be shown that csFailure(P1, 15) is this cause.

Note that, although mRadiation(P1, 20) is the latest action before achieving φ3

in situation S3, it is irrelevant because it did not enable any context and thus

did not contribute to the change in coreTemp. My definition correctly identifies

mRadiation(P1, 20) as an irrelevant action. Also, even though rupture(P1, 5) con-

tributed to the change, it is not a primary cause of φ3 because it is not the primary

cause of the enabled context γ1 in achievement situation S3.

94

4.6.2 Examples: Compound Cases

Before presenting examples of conjunctive and disjunctive cases, I will extend the

domain theory of our running example. I will add two more actions: fuelMisH (p, t)

(fuel mishandling of plant p at time t) and fuelCl(p, t) (fuel cleanup of p at t). Addi-

tionally, I will introduce two more fluents: a discrete fluent FuelMH (p, s) (indicating

that fuel of p is mishandled in s) and a temporal fluent radLevel(p, t, s) (denoting the

radiation level of p at time t in situation s).

I add two action precondition axioms to our theory:

Axiom 4.6.1.

a) Poss(fuelMisH (p, t), s) ≡ true,

b) Poss(fuelCl(p, t), s) ≡ FuelMH (p, s).

That is, fuelMisH (p, t) can always be executed, while fuelCl(p, t) can only be executed

in situation s if fuel mishandled is true in that situation.

Next, I add a successor-state axiom for the FuelMH (p, s) fluent:

Axiom 4.6.2.

FuelMH (p, do(a, s)) ≡ ∃t. a = fuelMisH (p, t) ∨ (FuelMH (p, s) ∧ a ̸= fuelCl(p, t)).

That is, the fuel of plant p is mishandled in situation do(a, s) if a refers to a

95

fuelMisH (p, t) action for p at some time t, or if the fuel of p was already mishan-

dled in s and a does not refer to a cleanup of p action.

And for temporal fluent radLevel(p, t, s), I add the following state evolution axiom

to describe how it changes over time under the only relevant context FuelMH (p).

Axiom 4.6.3.

radLevel(p, t, s) = y ≡ [(FuelMH (p, s) ∧ δ4(p, t, s))

∨ (y = radLevel(p, start(s), s) ∧ ¬FuelMH (p, s)))],

where,

δ4(p, t, s)
def
= radLevel(p, t, s) = radLevel(p, start(s), s) + (t− start(s))× 2.

That is, if the context FuelMH (p, s) is true, then the radiation level changes at the

rate of δ4 (an increase of two units each second); otherwise, it remains the same as

at the beginning of the situation.

Finally, I add the following two initial state axioms:

Axiom 4.6.4.

a) ¬FuelMH (P1, S0),

b) radLevel(P1, start(S0), S0) = 0.

96

I call this extended domain theory Dnpp2, defined as follows:

Dnpp2 = Dnpp ∪ {Axiom4.6.1 — 4.6.4}. (4.24)

4.6.3 Example: Conjunctive Case

Consider the causal setting ⟨Dnpp2, φ4, σ4⟩, where:

φ4 = (coreTemp(P1) ≥ 1000) ∧ (radLevel(P1) ≥ 30),

σ4 = do([rupture(P1, 10), fuelMisH (P1, 11), csFailure(P1, 20),mRadiation(P1, 25),

fixP(P1, 31)], S0).

This is depicted in Figure 4.2, which also shows the core temperature and radiation

levels at the beginning and end of each situation.

−50◦, 0, S0

−50◦, 0, S0

rupture(P1, 10) −50◦, 0, S1

−15◦, 0, S1

fuelMisH (P1, 11) −15◦, 0, S2

300◦, 18, S2

csFailure(P1, 20)
300◦, 18, S3

800◦, 28, S3

mRadiation(P1, 25)
800◦, 28, S4

30, radLevel(P1) ≥ 30
1000◦, coreTemp(P1) ≥ 1000

1400◦, 40, S4

fixP(P1, 31)
1400◦, 40, σ4

Figure 4.2: Primary Cause in Hybrid Domains: Conjunctive Case

97

Given this, according to the Definition 4.4.1, the primary cause is as follows:

Proposition 6.

Dnpp2 |= CausesDirectly temp(csFailure(P1, 20), 2, φ4, σ4).

Proof sketch. Using similar arguments as in the proof of Proposition 5, I can show

that:

Dnpp2 |= CausesDirectly(csFailure(P1, 20), 2, γ1, S4),

Dnpp2 |= CausesDirectly(fuelMisH (P1, 11), 1, γ4, S4).

Also, I can show that:

Dnpp2 |= AchvSit(S4, coreTemp(P1) ≥ 1000, σ4) ∧ γ1[S4],

Dnpp2 |= AchvSit(S4, radLevel(P1) ≥ 30, σ4) ∧ γ4[S4].

Since csFailure(P1, 20), executed at time-stamp 2, is the latest action between the two,

it is responsible for the conjunction becoming true, and hence according to Definition

4.4.1, it is the primary cause of the whole conjunction.

Intuitively, since the direct achievement cause of an effect must be the action that

directly brought about the effect, it seems reasonable to call this last relevant action

the primary cause of the effect.

98

4.6.4 Example: Disjunctive Case

For the disjunctive case, let us consider another causal setting ⟨Dnpp2, φ5, σ5⟩, where

the effect φ5 and the scenario σ5 are defined as follows:

φ5 = (coreTemp(P1) ≥ 1000) ∨ (radLevel(P1) ≥ 30),

σ5 = do([fuelMisH (P1, 8), rupture(P1, 10), csFailure(P1, 20),mRadiation(P1, 25),

fixP(P1, 31)], S0).

This is depicted in Figure 4.3, which also shows the core temperature and radiation

levels at the beginning and end of each situation.

−50◦, 0, S0

−50◦, 0, S0

fuelMisH (P1, 8) −50◦, 0, S1

−50◦, 4, S1

rupture(P1, 10) −50◦, 4, S2

300◦, 24, S2

csFailure(P1, 20)
300◦, 24, S3

30, radLevel(P1) ≥ 30

800◦, 34, S3

mRadiation(P1, 25)
800◦, 34, S4

1000◦, coreTemp(P1) ≥ 1000

1400◦, 46, S4

fixP(P1, 31)
1400◦, 46, σ5

Figure 4.3: Primary Cause in Hybrid Domains: Disjunctive Case

Given this causal setting, according to Definition 4.4.2, we have:

99

Proposition 7.

Dnpp2 |= CausesDirectly temp(fuelMisH (P1, 8), 0, φ5, σ5).

Proof sketch. Similar to the proof of Proposition 6, I can show that:

Dnpp2 |= CausesDirectly(csFailure(P1, 20), 2, γ1, S4),

Dnpp2 |= CausesDirectly(fuelMisH (P1, 8), 0, γ4, S3).

Also, we have:

Dnpp2 |= AchvSit(S4, coreTemp(P1) ≥ 1000, σ4) ∧ γ1[S4],

Dnpp2 |= AchvSit(S3, radLevel(P1) ≥ 30, σ4) ∧ γ4[S3].

Even though csFailure(P1, 20) is the latest contributor towards achieving the effect

coreTemp(P1) ≥ 1000◦ and thus φ5, it is not the reason for φ5 becoming true in

the given scenario σ5. According to Definition 4.4.2, since radLevel(P1) ≥ 30 has

an earlier achievement situation and thus is the reason for the disjunction becoming

true in achievement situation S3, the primary cause of radLevel(P1) ≥ 30 is also the

primary cause of the entire disjunction φ5.

100

4.6.5 Example: Implicit Primary Cause

Consider the causal setting ⟨Dnpp3, φ6, σ6⟩, where the domain theory Dnpp3, the

effect φ6 and the scenario σ6 are defined as follows:

Dnpp3 = Dnpp\{¬CSFailed(P1, S0)} ∪ {CSFailed(P1, S0)},

φ3
def
= coreTemp(P1) ≥ 1000,

σ6 = do([mRadiation(P1, 10), fixCS (P1, 22),mRadiation(P1, 25)], S0).

Given this, we have:

Axiom 4.6.5.

Dnpp3 |= γ3[S0].

The scenario is depicted in Figure 4.4.

−50◦, γ3, S0

500◦, γ3, S0

mRadiation(P1, 10)
500◦, γ3, S1

1050◦, φ3

1160◦, γ3, S1

fixCS (P1, 22)
1160◦, S2

1160◦, S2

mRadiation(P1, 25)
1160◦, σ6

Figure 4.4: Implicit Primary Cause

101

Given this, I can show that:

Proposition 8.

Dnpp3 |= ¬∃a, ts. CausesDirectlyprim
HTSC (a, ts, φ3, σ6).

Proof. In the initial situation S0, according to Axiom 4.6.5, the cooling system

had already failed, i.e., CSFailed(P1, S0). Moreover, by Axiom 3.3.14(a), the pipe

of P1 is not ruptured, and hence the context γ3 (¬Ruptured(P1) ∧ CSFailed(P1))

related to coreTemp was already enabled, leading to an increase in coreTemp as

specified in Axiom 3.3.12. In S0, after executing the mRadiation(P1, 10) action, which

was executable according to Axiom 3.3.10(e), the effect φ3 became true in situation

S1 = do(mRadiation(P1, 10), S0). According to Axiom 3.3.11(b), CSFailed(P1, S1)

holds.

Next, according to Axiom 3.3.10(d), the fixCS (P1, 22) action can be executed in

situation S1. After this action and as specified in Axiom 3.3.11(a) and (b), both

¬Ruptured(P1, S2) and ¬CSFailed(P1, S2) hold, where S2 = do(fixCS (P1, 22), S1).

Furthermore, Axiom 3.3.12 dictates that this action disables context γ3, which stops

the change in coreTemp in situation S2.

Finally, the actionmRadiation(P1, 25) was executable in situation S2 as per Axiom

3.3.10(e). Since no context was enabled in situation S2, coreTemp remains unchanged

102

until σ6, and as a result, the effect φ3 persists. Therefore, we have:

Dnpp3 |= AchvSit(S1, φ3, σ6) ∧ γ3[S1]. (4.25)

As per Axiom 4.6.5, γ3 was already true in S0 and remained true till the achievement

situation S1. Definition 3.4.6 requires γ3 to be false before an action can cause it, and

hence:

Dnpp3 |= ¬∃a, ts.CausesDirectly(a, ts, φ3, σ6).

Thus, no action in σ6 is directly responsible for the temperature increase con-

tributing to the effect. Here, the primary cause is implicit in the initial situation.

4.7 Conclusion

Building on the foundational work of Batusov and Souchanski [4] as well as Khan

and Lespérance [30] in the discrete domains, I have proposed a new definition of pri-

mary cause for primitive temporal fluents within a recently developed hybrid temporal

version of the situation calculus. First, I defined proper hybrid causal setting where,

besides the achievement condition, I also require the effect to be false at the end of the

initial situation. I addressed the challenge of pinpointing the exact achievement time

point for effects by defining the achievement situation where the effect is achieved,

and after which it remains true till the end of the scenario. Instead of using an exact

103

time point, I use the start and end time points of situations and show how precise

identification of causal relationships over time can still be modeled using this.

I explored how one can extend my primary cause definition to settings where

the effect is a conjunction or disjunction of two primitive temporal fluents. Next, I

studied properties of the primary cause, in particular demonstrated its uniqueness,

and examined conditions for its persistence when the scenario changes. Additionally,

I showed that in a proper hybrid causal setting, the primary cause might not exist

and could be implicit in the initial situation. Finally, I gave detailed examples to

illustrate the intuition behind my formalism.

The work presented in this chapter is limited in many ways. For instance, I only

dealt with causes of primitive effects and simple conjunctive and disjunctive effects.

Also, I focused on primary causes exclusively and ignored secondary or indirect causes.

Finally, I only looked at achievement causes, but not maintenance causes. Nonethe-

less, my proposal shows that formalizing causes even under such strong restrictions

is non-trivial and interesting. In the future, I plan to extend this to deal with some

of these constraints.

104

Chapter 5

Another Definition of Primary Cause:

A Counterfactual Perspective

5.1 Introduction

Building on my proposal in Chapter 3, where I defined counterfactual situations,

analyzed causes in discrete domains, and demonstrated how preempted causes in the

absence of actual causes can still produce effects, in this chapter I study how coun-

terfactuals and causes are related in hybrid domains. Khan and Soutchanski [32] pre-

viously studied the relationship between actual causes and contributors/contributing

actions, and some of this work is motivated by that. To this end, I give another

definition of primary cause within the hybrid temporal situation calculus for primi-

tive temporal case and show that this definition is equivalent to the one proposed in

Chapter 4 (Definition 4.3.1).

As discussed in Section 3.5, a key challenge is preemption, which complicates the

105

causal relationship. A particular complication that arises in the context of hybrid

temporal situation calculus is that preempted causes can occur even before the direct

cause1. To address this problem, I first identify the preempted causes/contributors.

Subsequently, I introduce the concept of a “defused” situation, where the actual

cause along with all preempted contributors are replaced with noOp actions, i.e.,

actions that have no effect. This substitution allows us to isolate the impact of the

primary cause by removing the influence of the cause and its preempted contributors.

I then show that in this defused situation, either the effect does not occur or the

scenario becomes non-executable, as formalized in Theorem 5.3.5. I illustrate this with

examples in Section 5.4, showing how temporal ordering affects causal interpretation.

The work presented in this chapter is somewhat preliminary in nature.

5.2 Another Definition of Primary Cause

I start by introducing various notions of contributors and define actual cause

through contributions in the achievement situation. First, I define direct possible

contributors, i.e., actions that directly initiate the change in the values of temporal

fluents.

Definition 5.2.1 (Direct Possible Contributor). Given a hybrid temporal action

theory D, and an effect φ, which is a constraint on the value of a temporal fluent

f , an action α executed in situation sα is called a direct possible contributor to φ

1Note that this cannot be the case in discrete domains; otherwise, by definition, the preempted
cause would have been the actual cause.

106

(denoted using DirPossContr(α, sα, φ)), if and only if the following holds:

D |= ∃i, sφ, σ, ts. executable(sα) ∧ Poss(α, sα) ∧ timeStamp(sα) = ts ∧ sα < sφ ≤ σ

∧ ¬φ[time(α), sα] ∧ φ[end(sφ, σ), sφ] ∧ CausesDirectly(α, ts, γf
i , sφ).

That is, α executed in situation sα is a direct possible contributor of φ, i.e.,

DirPossContr(α, sα, φ), if and only if sα is an executable situation, it is possible

to execute α in sα, the timestamp of sα is ts, the effect was false in sα but later

became true by the end of a future situation sφ within some scenario σ, and α exe-

cuted in timestamp ts is a direct cause of some context γf
i of f in situation sφ. Note

that, the last conjunct, i.e., CausesDirectly(α, ts, γf
i , sφ), ensures that γf

i has been

true since the execution of α, and thus given that ¬φ[time(α), sα]∧φ[end(sφ, σ), sφ],

it must have been the enabled context when φ was achieved. Thus α must have been

the action that achieved φ. It should also be noted that φ and γf
i are not required to

be true in σ. Finally, note that sφ and σ are not guaranteed to be within the actual

scenario.

In the following, I will also use a variant of DirPossContr that makes sφ and σ

explicit, i.e., DirPossContr(α, sα, sφ, σ, φ).

Next, I define the notion of direct actual contributors. These actions are direct

possible contributors that are contained within a given causal setting (scenario).

Definition 5.2.2 (Direct Actual Contributor). Given a hybrid temporal achievement

causal setting ⟨D, σ, φ⟩, an action α executed in situation sα is called a direct actual

107

contributor to an effect φ—which is a constraint on the value of a temporal fluent f ,

i.e., DirActContr(α, sα, sφ, φ, σ), if and only if the following holds:

D |= ∃σ′. DirPossContr(α, sα, sφ, σ
′, φ) ∧ σ′ ≤ σ.

That is, α executed in situation sα is a direct actual contributor to effect φ which

was brought about in situation sφ within scenario σ if and only if α executed in sα is

a direct possible contributor of φ for some scenario σ′, sφ is an achievement situation

of φ, and σ′ occurs within the scenario σ.

We want to define primary cause as a direct actual contributor such that, after

its contribution, the effect is achieved and persists until the end of a scenario—i.e.,

a direct actual contributor to an active context in the achievement situation. Using

this, I now give another definition of primary cause.

Definition 5.2.3 (Primary Cause). Given a hybrid temporal achievement causal set-

ting, ⟨D, σ, φ⟩, an action α, executed at time-stamp ts, is called the primary cause of

the effect φ—which is a constraint on the value of a temporal fluent f , denoted by

PrimaryCause(α, ts, φ, σ), if and only if

D |= ∃sα, sφ. AchvSit(sφ, φ, σ) ∧ timeStamp(sα) = ts ∧ DirActContr(α, sα, sφ, φ, σ).

That is, α executed at ts is the primary cause of φ in scenario σ if and only if sφ is the

achievement situation of φ in σ, and α executed in some situation sα with timestamp

108

ts is a direct actual contributor of φ in σ.

Now, I prove that this new definition is equivalent to the one proposed in Chapter

4, i.e., CausesDirectlyprim
temp (a, ts, φ, s), in Definition 4.3.1.

Theorem 5.2.1 (Equivalence of Primary Cause and Direct Cause Definitions).

Given a hybrid causal setting ⟨D, σ, φ⟩, we have:

D |= ∀α1, ts1, α2, ts2.CausesDirectly
prim
temp (α1, ts1, φ, s) ∧ PrimaryCause(α2, ts2, φ, σ)

⊃ α1 = α2 ∧ ts1 = ts2.

Proof sketch. By Lemma 4.5.2 and Axiom 3.3.4, the achievement situation sφ and

the context γf
i enabled is sφ are the same in both definitions. According to Definition

4.3.1, α1 executed in ts1 directly causes γf
i in sφ. In Definition 5.2.3, α2 executed

in ts2 directly causes the same γf
i in sφ (see Definitions 5.2.1 and 5.2.2). Given the

uniqueness of direct causes (see Lemma 4.5.1), α1 and α2 must be the same action

and their execution time must also be the same.

5.3 Defused Situation for Counterfactual Analysis

As discussed in the example given in Section 3.5.2, in discrete domains, if we

remove the primary cause from the scenario, the effect might still follow due to the

presence of preempted actions. The same applies to hybrid domains: even if we

remove the direct cause, another context realized by a subsequent action might come

109

into effect and bring about the effect. Furthermore, in hybrid domains, preempted

causes can occur even before the direct cause, as demonstrated in examples later in

Section 5.4. This is because the removal of the actual cause (and the context realized

by it) might result in another context, brought about by an earlier action persisting,

which might bring about the effect eventually. To address this issue, I will use the

following approach: after replacing the primary cause with a noOp action with an

appropriate time argument, I check if another action becomes the primary cause in

the new scenario. If a new primary cause emerges, it must have been a preempted

action. So I replace this new primary cause with another noOp action and repeat

this process until no primary causes remain. By doing this, I thus not only remove

the primary cause from the scenario but also all preempted causes/actions. I will

show later on that in the resultant scenario, either the effect no longer holds, or the

scenario itself becomes non-executable, unless some context inherent in the initial

situation brings about the effect (see Theorem 5.3.5).

First, let me define preempted contributors, which are actions that could have

caused the effect if it were not for the primary cause.

Definition 5.3.1 (Preempted Contributors). Given a hybrid temporal achievement

causal setting, ⟨D, σ, φ⟩, an action a, time-stamp ts, and situation σ′, PreempContr

110

(a, ts, σ′, φ, σ) is defined as follows:

PreempContr(a, ts, σ′, φ, σ)
def
= ∀P.[∀a, ts, φ, σ, σ′.(PrimaryCause(a, ts, φ, σ)

∧ CF one(σ
′, σ, ⟨noOp(time(a)), a, ts⟩) ⊃ P (a, ts, σ′, φ, σ))

∧ ∀a′, ts′, φ, σ, σ′. (∃a′′, ts′′, σ′′.(P (a′′, ts′′, σ′′, φ, σ)

∧ PrimaryCause(a′, ts′, φ, σ′′) ∧ CF one(σ
′, σ′′, ⟨noOp(time(a ′)), a′, ts′⟩)

⊃ P (a′, ts′, σ′, φ, σ))

] ⊃ P (a, ts, σ′, φ, σ).

Thus, PreempContr is defined to be the least relation P such that if a executed at

time-stamp ts is a primary cause of φ in scenario σ, then (a, ts, σ′, φ, σ) is in P , where

σ′ is a single action counterfactual situation to σ obtained by replacing a at ts with

noOp(time(a)). And if a′′, ts′′, σ′′, φ, and σ is in P , a′ executed at time-step ts′

is a primary cause of φ in σ′′, and σ′ is a single action counterfactual situation of

σ′′ that can be obtained by replacing a′ at ts′ with the noOp(time(a ′)) action, then

(a′, ts′, σ′, φ, σ) is also in P .

Here, while we do not check the executability of the updated scenario (e.g. by

using CFExone instead of CFone), this is guaranteed by our definition of primary cause,

which requires the scenario to be executable (see Definition 5.2.3). Additionally,

note that PreempContr returns a set of tuples containing σ′, where σ′ is a situation

obtained by removing the actual cause and zero or more preempted contributors.

111

We need to identify the tuple containing a situation σ′ where all2 the preempted

contributors are replaced with noOp actions. That is, we are looking for the tuple

with the highest number of noOp actions. To achieve this, let us define the number

of noOp actions in σ, denoted by |σ|.

Definition 5.3.2 (|σ|).

|s| =

0, if s = S0,

0 + |s′|, if s = do(a, s′) ∧ ¬∃t. a = noOp(t),

1 + |s′|, if ∃t. s = do(noOp(t), s′).

Using this, I define a defused situation as one that contains the maximum number of

noOp actions.

Definition 5.3.3 (Defused Situation).

DefusedSit(φ, σ, σ′)
def
= ∃a′, ts′. PreempContr(a′, ts′, σ′, φ, σ)

∧ ∀σ′′, a′′, ts′′. PreempContr(a′′, ts′′, σ′′, φ, σ) ∧ σ′ ̸= σ′′ ⊃ |σ′′| < |σ′|.

That is, σ′ is the defused situation of σ with respect to φ if there exists an action α′

and a time-stamp ts′ such that (a′, ts′, σ′, φ, σ) is in the set of preempted contributors

for some a′, and for any other σ′′ such that (a′′, ts′′, σ′′, φ, σ) is in the set of preempted

2In fact we might not be able to remove all preempted contributors, e.g., when the scenario
becomes non-executable. So we are really talking about identifying the tuple where the maximum
number of preempted causes are removed.

112

contributors for some a′′, ts′′, if σ′ is different than σ′′, then σ′ must have more noOp

actions in it. Thus a defused situation is one where the actual cause along with

the highest number of preempted causes are removed. Note that this might involve

removing all the preempted causes. It is also possible that not all preempted con-

tributors were removed, e.g., when replacing an action with noOp made the scenario

non-executable (and thus the preempted action is no longer an achievement cause in

the modified scenario).

I will next present a theorem that shows using the defused situation that the

effect is indeed counterfactually dependent on the primary cause in the sense that if

the cause along with most of the preempted actions are removed to obtain a defused

situation, either the effect does not follow in this situation, or the scenario becomes

non-executable, unless a relevant context was already true in the initial situation S0.

But before presenting the counterfactual dependence theorem, let me introduce some

supporting lemmata.

Lemma 5.3.1.

D |= ∃a, ts. PrimaryCause(a, ts, φ, σ) ⊃ ∃σ′. DefusedSit(φ, σ, σ′).

Proof. By Definition 5.2.3 and 5.3.1, if a is a primary cause then σ must have been

a non-initial situation (i.e., σ ̸= S0), and thus we can always construct σ′ by replacing

a with the noOp(time(a)) action in σ.

113

Next, I show that two counterfactual situations obtained by replacing the same

number of noOp actions with preempted contributors, must be the same.

Lemma 5.3.2.

∃a1, ts1, σ1, φ, σ, a2, ts2, σ2, φ, σ. PreempContr(a1, ts1, σ1, φ, σ)

∧ PreempContr(a2, ts2, σ2, φ, σ) ∧ |σ1| = |σ2| ⊃ σ1 = σ2.

Proof sketch (by induction). I start by induction on |σ1|, the number of noOp

actions in σ1. For n = 1, both σb
1 and σb

2 contain exactly one noOp action, which

corresponds to a substitution of the primary cause of φ in σ. By Definition 5.3.1, the

Property 4.5.3 (the uniqueness of the primary cause), and Theorem 5.2.1 (that the

two definitions of primary causes are equivalent), we have:

PreempContr(a1, ts1, σ
b
1, φ, σ) ∧ PreempContr(a2, ts2, σ

b
2, φ, σ) ⊃ σb

1 = σb
2.

Assume that the consequence holds for |σk
1 | = |σk

2 | = k.

We will show that it holds for |σ1| = |σ2| = k + 1. By the same argument as in the

base case (i.e., that replacing the actual cause from the same situation yields a unique

situation due to the uniqueness of primary cause), it can be shown that σ1 = σ2.

Using this, I can show that:

114

Lemma 5.3.3.

∃σ′, σ′′. DefusedSit(φ, σ, σ′) ∧ DefusedSit(φ, σ, σ′′) ⊃ σ′ = σ′′.

Proof. Follows directly from Lemma 5.3.2, Definition 5.3.3, and the fact that since

the scenario σ is finite, only a finite number of actions could be replaced with noOp

actions.

I also show that in defused situation, no primary cause exists:

Lemma 5.3.4.

DefusedSit(φ, s, s′) ⊃ ¬∃b, tsb.PrimaryCause(b, tsb, φ, s
′).

Proof (by contradiction). Fix φ1, s1, s
′
1 and assume on the contrary that for some

b1 and tsb1 ,

PrimaryCause(b1, tsb1 , φ1, s
′
1).

According to Definition 5.3.1,

PreempContr(b1, tsb1 , s
′′
1, φ, s

′
1),

where s′′1 is a counterfactual situation of s′1 with b1 replaced by noOp(time(b1)). This

implies |s′1| < |s′′1|, contradicting Definition 5.3.3 and Lemma 5.3.3, which requires

s′1 to be the unique defused situation and s′1 to have the maximum number of noOp

115

actions. Therefore, no such b1 exists, proving the lemma.

Theorem 5.3.5 (Counterfactual Dependence). Given a hybrid temporal causal set-

ting, ⟨D, σ, φ⟩, the following holds:

∃a, ts.PrimaryCause(a, ts, φ, s) ⊃

(∃s′. DefusedSit(φ, s, s′) ∧

∧ (
∧
i

¬γf
i [S0] ⊃ ¬(φ[start(s′), s′] ∧ Executable(s′)))).

This states that if there is an action a and timestamp ts such that a executed at ts is

a primary cause of effect φ in scenario s, then there is a defused situation s′ relative

to φ and s, and if additionally it is known that all the contexts of φ are inactive

initially in S0 (i.e.,
∧

i ¬γ
f
i [S0]), then it must be the case that φ is false in the defused

situation s′, unless s′ has become non-executable.

Proof sketch. Fix A1, ts1, φ1, s1 and assume that PrimaryCause(A1, ts1, φ1, s1).

From Lemma 5.3.1, it follows that there is a situation, say s′1, such that DefusedSit

(φ1, s1, s
′
1).

Now, assume that
∧

i ¬γ
f
i [S0]. Also assume that Executable(s′1). We need to show

that ¬φ1[start(s
′
1), s

′
1]. I will prove this by contradiction. Assume that φ1[start(s

′
1), s

′
1].

Since all the contexts of the only fluent f in φ1 were initially false, there must be an

action A′
1(t) executed at some timestamp ts′ that brought about some context of φ

which eventually achieved φ. Consider the situation that replaces A′
1(t) with noOp(t)

116

in s′1, let’s call it s∗1. By Definition 5.3.1, s∗1 must be a preempted contributor, i.e.,

PreempContr(A′
1(t), ts

′, s∗1, φ, σ).

Moreover, |s∗1| > |s′1|; but this means that by Definition 5.3.3, s′1 cannot be the

defused situation with respect to φ and s1, which is contradictory to the above as-

sumption.

Note that the above analysis is not meant to be a proof of correctness. For

instance, if one were to define actual cause as the last non-noOp action in the scenario,

the property should still follow. Instead, the above property shows an intuitively

justifiable property of causes, that if one removes causes and preempted actions from

the scenario, under certain reasonable and intuitive conditions (i.e., that no context

of the temporal fluent holds initially), the effect will disappear.

5.4 Examples: Counterfactual Analysis

In this section, I present three examples illustrating different counterfactual sce-

narios: (i) a scenario that is executable but where the effect does not hold, (ii) a

scenario that is non-executable and where the effect does not hold, and (iii) a sce-

nario that is non-executable but where the effect holds.

117

5.4.1 Example 1

Let us revisit our Example 4.6.1, where in the causal setting ⟨Dnpp, φ3, σ3⟩, we

have:

φ3 = coreTemp(P1) ≥ 1000,

σ3 = do([rupture(P1, 5), csFailure(P1, 15),mRadiation(P1, 20), fixP(P1, 26)], S0),

Dnpp |= CausesDirectlyprim
temp(csFailure(P1, 15), 1, φ3, σ3).

According to Definition 5.3.1, I replace the primary cause of φ3 with the noOp(15)

action, resulting in the scenario σ′
3, i.e., CF one(σ3, σ

′
3, ⟨noOp(15), csFailure(P1), 1⟩).

σ′
3 = do([rupture(P1, 5), noOp(15),mRadiation(P1, 20), fixP(P1, 26)], S0).

σ′
3 is illustrated in Figure 5.1.

−50◦, S0

−50◦, S0

rupture(P1, 5)
φ3 = −50◦, γ2, S1

300◦, γ2, S1

noOp(15)
300◦, γ1, S2

475◦, γ1, S2

mRadiation(P1, 20)
475◦, γ1, S3

615◦, γ1, S3

fixP(P1, 26)
615◦, γ3, σ

′
3

Figure 5.1: Example 1. Counterfactuals in Primitive Temporal Case

118

By Axiom 3.3.14(a) and (b), and given that none of the contexts γ1, γ2, γ3 were active

in S0, Axiom 3.3.12 and 3.3.14(c) imply that the temperature of P1 remains at −50◦

in S0 at time 5. In situation S0, the rupture(P1, 5) action is executed. According

to Axiom 3.3.10(a), this action was possible to execute in S0. As stated in Axiom

3.3.14(b) and 3.3.11(b), we have ¬CSFailed(do(rupture(P1, 5), S0)). Therefore, in this

situation, the context γ2 is true. According to Axiom 3.3.12, this initiates the increase

in coreTemp in accordance with δ2, meaning the temperature rises by 35◦ per second.

Consequently, the core temperature reaches 300◦ at time 15.

In situation S1 = do(rupture(P1, 5), S0), an always-possible action noOp(15) is

executed at time 15, allowing coreTemp to continue increasing while the context γ2

remains true. The coreTemp reaches 475◦ at time 20.

Following the execution of the mRadiation(P1, 20) action in situation S2 =

do(noOp(15), S1), which was also executable according to Axiom 3.3.10(e),

Ruptured(P1, S3) continues to hold, as stated in Axiom 3.3.11(a), where S3 =

do(mRadiation(P1, 20), S2). The context γ2 remains unchanged, as does the rate

of change. The coreTemp continues to rise and reaches 615◦ at time 26.

Finally, fixP(P1, 26) is executed which is also possible to execute in S4 as per

Axiom 3.3.10(b), and given Ruptured(P1, S3).

Proposition 9.

Dnpp |= ¬φ2[start(σ
′
3), σ

′
3].

Initially, the core temperature was −50◦, and by the end of the scenario, it reached

119

615◦, failing to satisfy the achievement condition. Hence, the scenario σ′
3 is executable,

but the effect does not hold in σ′
3, i.e., ¬φ3[start(σ

′
3), σ

′
3].

5.4.2 Example 2

Consider a causal setting ⟨Dnpp, φ3, σ7⟩, where the effect φ3 and the scenario σ7

are defined as follows:

φ3 = coreTemp(P1) ≥ 1000,

σ7 = do([rupture(P1, 5), csFailure(P1, 15),mRadiation(P1, 26), fixP(P1, 40)], S0).

This is depicted in Figure 5.2.

−50◦, S0

−50◦, S0

rupture(P1, 5) −50◦, γ2, S1

300◦, γ2, S1

csFailure(P1, 15)
300◦, γ1, S2

1000◦, φ3

1400◦, γ1, S2

mRadiation(P1, 26)
1400◦, γ1, S3

2800◦, γ1, S3

fixP(P1, 40)
2800◦, γ3, σ7

Figure 5.2: Example 2. Figure 1/2. Counterfactuals in HTSC

Using similar arguments as given in Example 5.4.1 and according to Definition

120

4.3.1, I can show the following result about direct cause.

Dnpp |= CausesDirectlyprim
temp(csFailure(P1, 15), 1, φ3, σ7).

We now have σ′
7, where the primary cause csFailure(P1, 15) has been substituted with

noOp(15), i.e., CF one(σ7, σ
′
7, ⟨noOp(15), csFailure(P1), 1⟩).

σ′
7 = do([rupture(P1, 5), noOp(15),mRadiation(P1, 26), fixP(P1, 40)], S0).

σ′
7 is illustrated in Figure 5.3.

−50◦, S0

−50◦, S0

rupture(P1, 5) −50◦, γ2, S1

300◦, γ2, S1

noOp(15)
300◦, γ2, S2

860◦, γ2, S2

mRadiation(P1, 26)
860◦, γ2, S3

1000◦, φ3

1175◦, γ2, S3

fixP(P1, 40)
1175◦, σ′

7

Figure 5.3: Example 2. Figure 2/2. Counterfactuals in HTSC

By following the same reasoning as before and as shown in Figure 5.3, the following

conclusion is easily seen:

Dnpp |= CausesDirectlyprim
temp(rupture(P1, 5), 1, φ3, σ

′
7).

121

Now I replace rupture(P1, 5) with noOp(5).

σ′′
7 = do([noOp(5), noOp(15),mRadiation(P1, 26), fixP(P1, 40)], S0).

I then derive the following results in σ′′
7 :

Proposition 10.

Dnpp |= ¬φ3[start(σ
′′
7), σ

′′
7] ∧ ¬Executable(σ′′

7).

The scenario σ′′
7 is non-executable because the action fixP(P1, 40) cannot be exe-

cuted in situation S3. According to the initial state axiom 3.3.14(a), Ruptured(P1, S0)

was false, and during the scenario, no pipe rupture action (e.g., rupture(P1, t)) was

performed to make the precondition Ruptured(P1, S3) true as required by Axiom

3.3.10(a). Additionally, no action in the scenario enabled a context for coreTemp,

so its value remains the same as in the initial situation, which was −50◦ (see Axiom

3.3.12).

122

5.4.3 Example 3

Consider a causal setting ⟨Dnpp, φ3, σ8⟩, where the effect φ3 and the scenario σ8

are defined as follows:

φ3 = coreTemp(P1) ≥ 1000,

σ8 = do([rupture(P1, 5), csFailure(P1, 15),mRadiation(P1, 26), fixCS (P1, 40)], S0).

This is depicted in Figure 5.4.

−50◦, S0

−50◦, S0

rupture(P1, 5) −50◦, γ2, S1

300◦, γ2, S1

csFailure(P1, 15)
300◦, γ1, S2

1000◦, φ3

1400◦, γ1, S2

mRadiation(P1, 26)
1400◦, γ1, S3

2800◦, γ1, S3

fixCS (P1, 40)
2800◦, γ3, σ8

Figure 5.4: Example 3. Figure 1/2. Counterfactuals in HTSC

As illustrated in Figure 5.4, we have the following result about achievement of φ3

in σ8:

Dnpp |= CausesDirectlyprim
temp(csFailure(P1, 15), 1, φ3, σ8).

Now we have σ′
8 such that the primary cause is replaced with noOp(15), and is

123

depicted in Figure 5.5.

σ′
8 = do([rupture(P1, 5), noOp(15),mRadiation(P1, 26), fixCS (P1, 40)], S0).

−50◦, S0

−50◦, S0

rupture(P1, 5) −50◦, γ2, S1

300◦, γ2, S1

noOp(15)
300◦, γ1, S2

860◦, γ1, S2

mRadiation(P1, 26)
860◦, γ1, S3

1000◦, φ3

1175◦, γ1, S3

fixCS (P1, 40)
1175◦, γ3, σ

′
6

Figure 5.5: Example 3. Figure 2/2. Counterfactuals in HTSC

We have the following direct cause of φ3 in scenario σ′
8:

Dnpp |= CausesDirectly(rupture(P1, 5), 0, γ1, S3).

Proposition 11.

Dnpp |= ¬Executable(σ′
8).

Even though the effect is achieved in the scenario σ′
8, the scenario σ

′
8 itself has become

non-executable because the action fixCS (P1, 40) cannot be executed as per Axiom

124

3.3.10(d). Per the initial state axiom 3.3.14(b), CSFailure(P1, S0) was false, and dur-

ing the scenario, no cooling system failure action (e.g., csFailure(P1, t)) was performed

to satisfy the precondition CSFailure(P1, S3), as required by Axiom 3.3.10(c).

5.5 Conclusion

In this chapter, I extended my counterfactual analysis in discrete domains to

temporal cases. I first introduced a new definition of primary cause based on the

notion of contributions. Note that while I defined primary cause as direct actual

contributor of φ in the achievement situation sφ, it would have been more intuitive to

rather define it as the lastest/last direct actual contributor of φ. I leave this for future

work. I showed that the two definitions of primary cause (Definition 4.3.1 and 5.2.3)

are equivalent. To formally study the contribution of the primary cause on the effect

formula and to address the preemption issue, I identified and replaced all preempted

contributors/causes with noOp actions before verifying if the effect still follows. This

led to Theorem 5.3.5, which states that if all preempted causes are replaced with

noOp actions, then either the effect does not occur or the scenario itself becomes

non-executable.

Through illustrative examples, I demonstrated how the temporal ordering of

events impacts causal reasoning and highlighted the necessity of addressing preempted

actions to establish causality accurately. Overall, this study contributes to our ability

125

to accurately determine causes in hybrid domains by isolating and removing the influ-

ence of preempted causes. In the future, I plan to capture a more intuitive definition

of causes via contributions (as discussed in Section 5.3), and extend this analysis to

cover compound effects as well as indirect causes.

126

Chapter 6

Conclusions and Future Research

6.1 Contributions

Motivated by the hybrid nature of change in the real world, in this thesis, I stud-

ied actual causes in the hybrid temporal situation calculus. I investigated causation

through two perspectives: the foundational approach, where I studied actions and

their effects to define achievement causation, and the counterfactual approach, where

I defined causation through contributions and justified it using a counterfactual anal-

ysis. I started by examining some popular existing approaches and their limitations.

Following this, I discussed a foundational framework for modeling dynamic domains,

i.e., hybrid temporal situation calculus. Building on prior work in discrete domains,

I proposed a formalization of the primary achievement cause in the hybrid temporal

situation calculus. To the best of my knowledge, this is the first attempt to address

causation within hybrid temporal action-theoretic frameworks. The only other formal

effort in this area is the recent work by Halpern and Peters [23], that was discussed

127

in Chapter 2. However, their framework lacks grounding in a proper action theory

and consequently suffers from significant expressive limitations. Below, I will outline

the contributions of this thesis.

1. Counterfactual Scenarios in the Situation Calculus

In Chapter 3, I examined counterfactual scenarios, specifically what would have

happened if certain actions had not been executed in the given scenario. I formalized

both single-action and multiple-action counterfactual situations along with their exe-

cutable variants. Additionally, I demonstrated how actual causes in discrete domains

(Definition 3.4.7) encounter issues with preemption, where the effect might still follow

due to preempted causes; see Theorem 3.5.2.

2. A Novel Foundational Definition of Primary Achievement Cause in

Hybrid Dynamic Domains

In Chapter 4, I first defined a proper hybrid causal setting (Definition 4.2.1).

I then proposed a definition of the primary achievement cause for effects that are

constraints on the values of primitive temporal fluents (Definition 4.3.1) and defined

the achievement situation of the effect (Definition 4.3.3) to ensure consistency with the

temporal ordering of events. In this, I focused on primitive temporal fluents and direct

causes exclusively. Additionally, I conducted preliminary work to address conjunctive

and disjunctive cases of temporal fluents as effects (Definitions 4.4.1 and 4.4.2). In

Section 4.5, I outlined the properties of my primary cause definition, demonstrating

128

the uniqueness of the primary cause and the conditions under which it persists. I also

showed that if change has already been initiated before any action is executed, the

effect can occur without apparent cause in a given trace. Finally, I provided examples

to illustrate the underlying intuition.

3. Counterfactual Analysis of Primary Cause in Hybrid Domains

In Chapter 5, I extended my notion of counterfactual scenarios from discrete

domains to hybrid domains. I then introduced an alternative definition of the primary

cause that is based on contributions made by actions to effects (Definition 5.2.3) and

demonstrated its equivalence (see Theorem 5.2.1) to my previous definition (Definition

4.3.1). I addressed the preemption issue by defining a defused situation where the

effect of the primary cause is isolated from preempted contributors (see Definition

5.3.3). This is done by removing primary as well as any preempted contributors from

the scenario to obtain a defused situation and evaluating the effect of cause in this

situation. I showed that, in an executable defused situation the effect can no longer be

observed (Theorem 5.3.5). Finally, I provided comprehensive examples to illustrate

my proposal.

6.2 Conclusion and Future Work

A striking aspect of intelligent reasoning is that it is conditioned by our under-

standing of causal relationships of actions and their effects. Change in the real world

129

can be both discrete and continuous, i.e., hybrid. Yet, almost all of the work on

formalizing actual causes that can be found in the literature considers change to be

discrete. In this thesis, I presented the first account of actual cause in hybrid dynamic

domains.

A word about implementablity of this theory: Reiter [50] demonstrated that

within the situation calculus one can use regression to solve the projection prob-

lem, which reduces projection to entailment from a first-order theory. Batusov, De

Giacomo, and Soutchanski also proposed a notion of regression in the hybrid tempo-

ral situation calculus [1, 2], which also reduces reasoning to first-order logic. Previ-

ously Khan and Soutchanski [32] reported a Prolog implementation of Batusov and

Soutchanski’s [4] original proposal, which I think can be extended to deal with the

hybrid case with some effort. I leave this for future work.

My current proposal is nonetheless limited in several ways. For instance, I only

addressed primitive fluents as effects and also did not consider indirect causes. How-

ever, this attempt demonstrates that determining causes requires careful modeling

and reasoning in hybrid domains, even under strong restrictions. In the future, I

plan to identify direct causes for arbitrary fluents, both discrete and temporal. This

is challenging, as different fluents have different achievement situations, altering the

context-achievement scenario significantly. I also aim to extend this work to discover

indirect or secondary causes. This should be achievable along similar lines as in [4, 30],

potentially with the aid of the newly proposed regression operator in hybrid temporal

situation calculus [1].

130

Moreover, one could extend my work on counterfactual analysis in temporal cases

to discrete cases by following the concept of a defused situation where preempted con-

tributors are removed. To fully capture real-world scenarios, future research could also

explore causation in hybrid domains where the effects of actions are non-deterministic,

the scenario is non-linear, and epistemic and conative aspects are considered. Finally,

it would be interesting to see how this research can be applied to deal with real-world

problems, for instance, to detect causes of historical as well as hypothetical faults in

dynamic systems such as nuclear power plants or for attributing responsibility and

blame in tort law, to name a few.

131

References

[1] Vitaliy Batusov, Giuseppe De Giacomo, and Mikhail Soutchanski. Hybrid tem-

poral situation calculus. In Marie-Jean Meurs and Frank Rudzicz, editors, Ad-

vances in Artificial Intelligence - 32nd Canadian Conference on Artificial In-

telligence, Canadian AI 2019, Kingston, ON, Canada, May 28-31, 2019, Pro-

ceedings, volume 11489 of Lecture Notes in Computer Science, pages 173–185.

Springer, 2019.

[2] Vitaliy Batusov, Giuseppe De Giacomo, and Mikhail Soutchanski. Hybrid tem-

poral situation calculus. In Chih-Cheng Hung and George A. Papadopoulos,

editors, Proceedings of the 34th ACM/SIGAPP Symposium on Applied Comput-

ing, SAC 2019, Limassol, Cyprus, April 8-12, 2019, pages 1162–1164. ACM,

2019.

[3] Vitaliy Batusov and Mikhail Soutchanski. Situation calculus semantics for ac-

tual causality. In Andrew S. Gordon, Rob Miller, and György Turán, editors,

Proceedings of the Thirteenth International Symposium on Commonsense Rea-

soning, COMMONSENSE 2017, London, UK, November 6-8, 2017, volume 2052

of CEUR Workshop Proceedings. CEUR-WS.org, 2017.

[4] Vitaliy Batusov and Mikhail Soutchanski. Situation calculus semantics for actual

causality. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings

of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),

the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the

8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-

18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1744–1752. AAAI

Press, 2018.

[5] Alexander Bochman. Actual causality in a logical setting. In Proceedings of the

132

Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-

18, pages 1730–1736. International Joint Conferences on Artificial Intelligence

Organization, 7 2018.

[6] Craig Boutilier, Raymond Reiter, Mikhail Soutchanski, and Sebastian Thrun.

Decision-theoretic, high-level agent programming in the situation calculus. In

Proceedings of the 17th International Joint Conference on Artificial Intelligence

(IJCAI), volume 2, pages 355–362, 2000.

[7] Ernest Davis, Andrew Haas, and Lenhart K. Schubert. Monotonic solution of the

frame problem in the situation calculus. In H.E. Kyburg, R.P. Loui, and G.N.

Carlson, editors, Knowledge Representation and Defeasible Reasoning, pages 97–

155. Kluwer Academic Publishers, 1990.

[8] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. Congolog, a

concurrent programming language based on the situation calculus. In Artificial

Intelligence, volume 121, pages 109–169. Elsevier, 2000.

[9] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. Indigolog: A

high-level programming language for embedded reasoning agents. In Multi-Agent

Programming: Languages, Platforms and Applications, pages 31–72. Springer,

2004.

[10] Giuseppe De Giacomo and Yves Lespérance. The Nondeterministic Situation

Calculus. In Proceedings of the 18th International Conference on Principles of

Knowledge Representation and Reasoning, pages 216–226, 11 2021.

[11] Thomas Eiter and Thomas Lukasiewicz. Complexity results for structure-based

causality. Artificial Intelligence, 142(1):53–89, 2002.

[12] Ari Fogel. On the use of epistemic ordering functions as decision criteria for

automated and assisted belief revision in sneps. 2011.

[13] Hojjat Ghaderi, Hector Levesque, and Yves Lespérance. Towards a logical theory

of coordination and joint ability. In Proceedings of the 6th International Joint

Conference on Autonomous Agents and Multiagent Systems, AAMAS ’07, New

York, NY, USA, 2007. Association for Computing Machinery.

133

[14] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. Congolog,

a concurrent programming language based on the situation calculus. Artificial

Intelligence, 121(1-2):109–169, 2000.

[15] Giuseppe De Giacomo, Yves Lespérance, and Adrian R. Pearce. Situation cal-

culus game structures and gdl. In Proceedings of the Twenty-Second European

Conference on Artificial Intelligence, ECAI’16, page 408–416, NLD, 2016. IOS

Press.

[16] Clark Glymour, David Danks, Bruce Glymour, Frederick Eberhardt, Joseph D.

Ramsey, Richard Scheines, Peter Spirtes, Choh Man Teng, and Jiji Zhang. Actual

causation: A stone soup essay. Synthese, 175(2):169–192, 2010.

[17] Andrew R. Haas. The case for domain-specific frame axioms. In Frank M.

Brown, editor, The Frame Problem in Artificial Intelligence: Proceedings of the

1987 Workshop, pages 343–348. Morgan Kaufmann Publishing, 1987.

[18] Joseph Y. Halpern. Axiomatizing causal reasoning. Journal of Artificial Intelli-

gence Research, 12:317–337, 2000.

[19] Joseph Y. Halpern. A modification of the halpern-pearl definition of causality.

In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-

Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,

Buenos Aires, Argentina, July 25-31, 2015, pages 3022–3033. AAAI Press, 2015.

[20] Joseph Y. Halpern. Actual Causality. MIT Press, 2016.

[21] Joseph Y. Halpern and Judea Pearl. Causes and explanations: a structural-

model approach: part i: causes. In Proceedings of the Seventeenth Conference

on Uncertainty in Artificial Intelligence, UAI’01, page 194–202, San Francisco,

CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[22] Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-

model approach. part i: Causes. The British Journal for the Philosophy of

Science, 56(4):843–887, 2005.

134

[23] Joseph Y. Halpern and Spencer Peters. Reasoning about causal models with in-

finitely many variables. In Proceedings of the 36th AAAI Conference on Artificial

Intelligence, 2022.

[24] Mark Hopkins. The Actual Cause: From Intuition to Automation. PhD thesis,

University of California Los Angeles, 2005.

[25] Mark Hopkins and Judea Pearl. Causality and counterfactuals in the situation

calculus. Journal of Logic and Computation, 17(5):939–953, 2007.

[26] Mark Hopkins and Judea Pearl. Causality and counterfactuals in the situation

calculus. Journal of Logic and Computation, 17(5):939–953, 2007.

[27] David Hume. An Enquiry Concerning Human Understanding. 1748.

[28] Shakil M. Khan and Yves Lespérance. A logical framework for prioritized goal

change. In 9th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2010), Toronto, Canada, May 10-14, 2010, Volume 1-3, pages

283–290, 2010.

[29] Shakil M. Khan and Yves Lespérance. Sr-apl: a model for a programming lan-

guage for rational bdi agents with prioritized goals. In The 10th International

Conference on Autonomous Agents and Multiagent Systems - Volume 3, AA-

MAS ’11, page 1251–1252, Richland, SC, 2011. International Foundation for

Autonomous Agents and Multiagent Systems.

[30] Shakil M. Khan and Yves Lespérance. Knowing why - on the dynamics of

knowledge about actual causes in the situation calculus. In Frank Dignum,

Alessio Lomuscio, Ulle Endriss, and Ann Nowé, editors, AAMAS ’21: 20th In-

ternational Conference on Autonomous Agents and Multiagent Systems, Virtual

Event, United Kingdom, May 3-7, 2021, pages 701–709. ACM, 2021.

[31] Shakil M. Khan and Maryam Rostamigiv. On explaining agent behaviour via

root cause analysis: A formal account grounded in theory of mind. In Kobi Gal,

Ann Nowé, Grzegorz J. Nalepa, Roy Fairstein, and Roxana Radulescu, editors,

ECAI 2023 - 26th European Conference on Artificial Intelligence, September 30

- October 4, 2023, Kraków, Poland - Including 12th Conference on Prestigious

135

Applications of Intelligent Systems (PAIS 2023), volume 372 of Frontiers in Ar-

tificial Intelligence and Applications, pages 1239–1247. IOS Press, 2023.

[32] Shakil M. Khan and Mikhail Soutchanski. Necessary and sufficient conditions

for actual root causes. In Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilk-

ina, Michela Milano, Senén Barro, Alberto Bugaŕın, and Jérôme Lang, editors,

ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8

September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020

- Including 10th Conference on Prestigious Applications of Artificial Intelligence

(PAIS 2020), volume 325 of Frontiers in Artificial Intelligence and Applications,

pages 800–808. IOS Press, 2020.

[33] Wolf Kohn, Anil Nerode, and Jeffrey B Remmel. Continualization: A hybrid

systems control technique for computing. In Symposium on control, optimization

and supervision (Lille, July 9-12, 1996), pages 507–511, 1996.

[34] Florian Leitner-Fischer and Stefan Leue. Causality checking for complex system

models. In Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni, editors,

Verification, Model Checking, and Abstract Interpretation, 14th International

Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings, vol-

ume 7737 of Lecture Notes in Computer Science, pages 248–267. Springer, 2013.

[35] Hector J. Levesque, Fiora Pirri, and Raymond Reiter. Foundations for the situ-

ation calculus. Electronic Transactions on Artificial Intelligence (ETAI), 2:159–

178, 1998.

[36] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and

Richard B. Scherl. Golog: A logic programming language for dynamic domains.

Journal of Logic Programming, 31(1-3):59–83, 1997.

[37] David Lewis. Counterfactuals. Harvard University Press, Cambridge, MA, 1973.

[38] John Leslie Mackie. Causes and conditions. American Philosophical Quarterly,

2(4):245–264, 1965.

[39] Norman McCain and Hudson Turner. Causal theories of action and change.

136

In Proceedings of the Fourteenth National Conference on Artificial Intelli-

gence and Ninth Conference on Innovative Applications of Artificial Intelligence,

AAAI’97/IAAI’97, page 460–465. AAAI Press, 1997.

[40] John McCarthy and Patrick J. Hayes. Some philosophical problems from the

standpoint of artificial intelligence. Machine Intelligence, 4:463–502, 1969.

[41] John McCarthy and Patrick J. Hayes. Some philosophical problems from the

standpoint of artificial intelligence. Machine Intelligence, 4:463–502, 1969.

[42] Asim Mehmood and Shakil M. Khan. Towards a Definition of Primary Cause in

Hybrid Dynamic Domains. Proceedings of the Canadian Conference on Artificial

Intelligence, may 27 2024. https://caiac.pubpub.org/pub/wr72f8ae.

[43] Anil Nerode. Logic and control. In S. Barry Cooper, Benedikt Löwe, and Andrea

Sorbi, editors, Computation and Logic in the Real World, pages 585–597, Berlin,

Heidelberg, 2007. Springer Berlin Heidelberg.

[44] Charles L. Ortiz Jr. Explanatory update theory: Applications of counterfactual

reasoning to causation. Artificial Intelligence, 108(1):125–178, 1999.

[45] Judea Pearl. On the definition of actual cause. Technical Report R-259, Univer-

sity of California Los Angeles, 1998.

[46] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University

Press, 2000.

[47] E. P. D. Pednault. ADL and the state-transition model of action. Journal of

Logic and Computation, 4(5):467–512, 1994.

[48] Fiora Pirri and Ray Reiter. Some contributions to the metatheory of the situation

calculus. J. ACM, 46(3):325–361, May 1999.

[49] David L. Poole. A framework for decision-theoretic planning i: Combining the

situation calculus, conditional plans, probability and utility, 2013.

[50] Raymond Reiter. The frame problem in the situation calculus: A simple so-

lution (sometimes) and a completeness result for goal regression. In Artificial

137

Intelligence and Mathematical Theory of Computation: Papers in Honor of John

McCarthy, pages 359–380. Academic Press, 1991.

[51] Raymond Reiter. Natural actions, concurrency and continuous time in the sit-

uation calculus. In International Conference on Principles of Knowledge Repre-

sentation and Reasoning, 1996.

[52] Raymond Reiter. Knowledge in Action. Logical Foundations for Specifying and

Implementing Dynamical Systems. MIT Press, Cambridge, MA, USA, 2001.

[53] Richard B. Scherl and Hector J. Levesque. Knowledge, action, and the frame

problem. Artificial Intelligence, 144(1-2):1–39, 2003.

[54] L. K. Schubert. Monotonic solution of the frame problem in the situation calcu-

lus: An efficient method for worlds with fully specified actions. In H. E. Kyburg,

R. P. Loui, and G. N. Carlson, editors, Knowledge Representation and Defeasible

Reasoning, pages 23–67. Kluwer Academic Press, Boston, MA, USA, 1990.

[55] Herbert A. Simon. Causal ordering and identifiability. Models of Discovery.

Boston Studies in the Philosophy of Science, 54, 1977.

[56] Mikhail Soutchanski. Execution monitoring of high-level temporal programs. 07

1999.

[57] Richard W. Wright. Causation in tort law. California Law Review, 73(6):1735,

1985.

[58] Vahid Yazdanpanah, Enrico H. Gerding, Sebastian Stein, Mehdi Dastani,

Catholijn M. Jonker, Timothy J. Norman, and Sarvapali D. Ramchurn. Reason-

ing about responsibility in autonomous systems: challenges and opportunities.

AI Soc., 38(4):1453–1464, 2023.

138

	Abstract
	Acknowledgements
	List of Figures
	Index to Symbols and their Definitions
	Transparency Statement
	Chapter 1 Introduction
	Motivation and Specific Problem
	Contributions
	Thesis Organization

	Chapter 2 Literature Review
	Introduction
	Regularity Theories of Causation
	Causes and INUS Conditions
	Counterfactual Theories of Causation
	Causal Models based on Structural-Equations-Modeling
	Causality and Counterfactuals in the Situation Calculus
	Bochman's non-monotonic Account
	Batusov and Soutchanski's Foundational Account of Causes
	Causal Knowledge and its Dynamics
	Necessary and Sufficient Conditions for Actual Root Causes
	Anil Nerode's Hybrid Systems
	Causal Models with Infinitely Many Variables
	Conclusion

	Chapter 3 Foundations
	Introduction
	The Situation Calculus
	Introduction
	Basic Action Theory
	Reasoning in the Situation Calculus
	Limitations of the Situation Calculus

	Hybrid Temporal Situation Calculus
	Introduction
	State Evolution Axioms
	Reasoning in Hybrid Temporal Situation Calculus
	Example

	Actual Cause in the Situation Calculus
	Situation Calculus Semantics for Actual Causality
	Embedding the Metatheoretic Account of Actual Causes by Batusov and Soutchanski into the Language of Situation Calculus
	Example - Causes in Discrete Case

	Counterfactual Worlds in Situation Calculus
	Defining Counterfactual Situations

	Conclusion

	Chapter 4 A Foundational Definition of Primary Achievement Cause in Hybrid Dynamic Domains
	Introduction
	Setting the Stage
	Primary Achievement Cause: The Primitive Case
	Intuition and Definition

	Handling Compound Effects
	Properties
	Examples
	Example: The Primitive Temporal Case
	Examples: Compound Cases
	Example: Conjunctive Case
	Example: Disjunctive Case
	Example: Implicit Primary Cause

	Conclusion

	Chapter 5 Another Definition of Primary Cause: A Counterfactual Perspective
	Introduction
	Another Definition of Primary Cause
	Defused Situation for Counterfactual Analysis
	Examples: Counterfactual Analysis
	Example 1
	Example 2
	Example 3

	Conclusion

	Chapter 6 Conclusions and Future Research
	Contributions
	Conclusion and Future Work

	References

