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Abstract— An alternative formulation of rough set theory can
be developed based on a binary relation between two universes,
one is a finite set of objects and the other is a finite set of
properties. Rough set approximation operators are defined with
respect to the binary relation. Three concept lattices are con-
structed based on approximation operators. They are different
from, but related to, the concept lattice built in formal concept
analysis. Through the study of the introduced concept lattices,
one can obtain an in-depth understanding of data analysis using
rough set theory.

I. I NTRODUCTION

Rough set theory [7], [8] and formal concept analysis [2],
[9] provide two related methods for data analysis [3], [10].
They study and model the notion of concepts from different
perspectives. The central notions of rough set theory are the
indiscernibility of objects with respect to a set of properties
and the induced approximation operators. The central notions
of formal concept analysis are formal concepts and concept
lattice. Proposals have been made to combine these two
theories in a common framework [1], [3], [4], [5], [10], [11].
On the one hand, one can introduce the notion of concept
lattice into rough set theory [3], [10]. On the other hand,
one can introduce the notion of approximation operators into
formal concept analysis [4], [5], [6], [11].

The classical rough set theory is developed based on an
equivalence (indiscernibility) relation on a universe of objects.
Generalized formulation has been proposed by using a binary
relation on two universes, one is a set of objects and the
other is a set of properties [3], [13]. A binary relation on two
universes is commonly known as a formal context in formal
concept analysis. It serves as a common basis for rough set
theory and formal concept analysis.

Düntsch and Gediga, following the study of modal logics,
defined modal-style operators based on a binary relation [1],
[3]. The derivation operator of formal concept analysis is a
polarity or sufficiency operator used in modal logics, and the
rough set approximation operators are in fact the necessity
and possibility operators used in modal logics [3], [12]. The
formulation in terms of modal-style operators enables us to
gain more insights into theories of rough sets and formal
concept analysis.

Düntsch and Gediga introduced a concept lattice con-
structed based on approximation operators [3]. Yao introduced
another concept lattice and compared the roles of different

TABLE I

A FORMAL CONTEXT

a b c d e

1 × × × ×

2 × ×

3 × ×

4 × ×

5 ×

6 × × ×

concept lattices in data analysis [10]. The objective of this
paper is to extend the results of these studies and to providea
more systematic examination of concept lattices in rough set
theory.

II. FORMAL CONTEXTS AND APPROXIMATION

OPERATORS

Let U andV be any two finite nonempty sets. Elements of
U are called objects, and elements ofV are called properties
or attributes. The set of objectsU is described by the set of
properties. More precisely, the relationships between objects
and properties are described by a binary relationR betweenU
andV , which is a subset of the Cartesian productU ×V . The
triplet (U, V, R) is called a formal context in formal concept
analysis, and an approximation space in rough set theory.

In a formal context(U, V, R), for a pair of elementsx ∈ U

andy ∈ V , if (x, y) ∈ R, also written asxRy, we say thatx
has the propertyy, or the propertyy is possessed by object
x. Table I is an example of a formal context. In this table, for
example, object1 has propertiesa, c, d, ande. The property
a is possessed by objects1, 2, 5, and6.

The binary relation can be equivalently expressed in two
additional forms. An objectx ∈ U has the set of properties:

xR = {y ∈ V | xRy} ⊆ V. (1)

A propertyy is possessed by the set of objects:

Ry = {x ∈ U | xRy} ⊆ U. (2)

The three different representations uniquely determine each
other, namely,xRy ⇐⇒ y ∈ xR ⇐⇒ x ∈ Ry. One can



extendxR to a subsetX ⊆ U andRy to a subsetY ⊆ V :

XR =
⋃

x∈X

xR,

R Y =
⋃

y∈Y

Ry. (3)

A property inXR is possessed byat least oneobject inX ,
and an object inR Y hasat least oneproperty inY .

With respect to a formal context(U, V, R), we define a pair
of dual approximation operators,2,3 : 2U −→ 2V :

X2 = {y ∈ V | ∀x ∈ U(xRy =⇒ x ∈ X)}

= {y ∈ V | Ry ⊆ X}, (4)

X3 = {y ∈ V | ∃x ∈ U(xRy ∧ x ∈ X)}

= {y ∈ V | Ry ∩ X 6= ∅}

=
⋃

x∈X

xR

= XR. (5)

They are related byXc2c = X3 and Xc3c = X2, where
c denotes the complement of a set. By definition, an object
having a property inX2 is necessarilyin X , and an object
having a property inX3 is only possibly in X . Thus, the
operators2 and3 are also referred to as the necessity and the
possibility operators [3].

If we assume thatRy 6= ∅ for all y ∈ V , namely, each
property must be possessed by at least one object inU , we
haveX2 ⊆ X3.

Conversely, we define a pair of dual approximation opera-
tors, 2,3 : 2V −→ 2U :

Y 2 = {x ∈ U | ∀y ∈ V (xRy =⇒ y ∈ Y )}

= {x ∈ U | xR ⊆ Y }, (6)

Y 3 = {x ∈ U | ∃y ∈ V (xRy ∧ y ∈ Y )}

= {x ∈ U | xR ∩ Y 6= ∅}

=
⋃

y∈Y

Ry,

= R Y. (7)

The same symbols are used for both operators from2U to 2V ,
and from2V to 2U . Their roles can be easily seen from the
context.

The pair of approximation operators have the properties: for
X, X1, X2 ⊆ U andY, Y1, Y2 ⊆ V ,

(i) X1 ⊆ X2 =⇒ [X2

1
⊆ X2

2
, X3

1
⊆ X3

2
],

Y1 ⊆ Y2 =⇒ [Y 2

1
⊆ Y 2

2
, Y 3

1
⊆ Y 3

2
],

(ii) X23 ⊆ X ⊆ X32,

Y 23 ⊆ Y ⊆ Y 32,

(iii) X323 = X3,

X232 = X2,

Y 323 = Y 3,

Y 232 = Y 2,

(iv) (X1 ∩ X2)
2 = X2

1
∩ X2

2
,

(X1 ∪ X2)
3 = X3

1
∪ X3

2
,

(Y1 ∩ Y2)
2 = Y 2

1
∩ Y 2

2
,

(Y1 ∪ Y2)
3 = Y 3

1
∪ Y 3

2
.

As an example, we show thatX232 = X2.
(=⇒) Assumey ∈ X232, we haveRy ⊆ X23. Therefore,
for all x ∈ U , xRy =⇒ x ∈ X23, namely,xRy =⇒ xR ∩
X2 6= ∅. Thus, for allx ∈ U , xRy implies that there exists a
z ∈ V such thatxRz∧z ∈ X2. The conditionz ∈ X2 implies
Rz ⊆ X . Combining it withxRz results inx ∈ X . Therefore,
for all x ∈ U , xRy implies x ∈ X . That is,y ∈ X2.
(⇐=) Assume thaty ∈ X2. Then for allx ∈ U , xRy =⇒
xR ∩ X2 6= ∅. It implies that for allx ∈ U , xRy =⇒ x ∈
X23. It follows that y ∈ X232.
The equalityX323 = X3 follows from X232 = X2 by the
duality of 2 and3.

III. F ORMAL CONCEPTLATTICES BASED ON

APPROXIMATION OPERATORS

Based on the notion of approximation operators, three
concept lattices are introduced [3], [10].

A. The object oriented concept lattice

The object oriented concept lattice was introduced by
Yao [10]. A pair (X, Y ), X ⊆ U, Y ⊆ V , is called an object
oriented formal concept ifX = Y 3 andY = X2. If an object
has a property inY then the object belongs toX . Furthermore,
only objects inX have properties inY . The set of objectsX
is called the extension of the concept(X, Y ), and the set of
the propertiesY is called the intension. The intension can be
used to construct the expression

∨
y∈Y xRy that describes the

objects in the extension.
The family of all object oriented concepts forms a lattice.

The meet∧ and the join∨ are defined by:

(X1, Y1) ∧ (X2, Y2) = ((Y1 ∩ Y2)
3, Y1 ∩ Y2)

= ((X1 ∩ X2)
23, Y1 ∩ Y2),

(X1, Y1) ∨ (X2, Y2) = (X1 ∪ X2, (X1 ∪ X2)
2)

= (X1 ∪ X2, (Y1 ∪ Y2)
32).

From the definition and properties (iii) and (iv), one can verify
that the pair((Y1∩Y2)

3, Y1∩Y2) is an object oriented concept.
More specifically,

((Y1 ∩ Y2)
3)2 = ((X2

1
∩ X2

2
)3)2)

= (X1 ∩ X2)
232

= (X1 ∩ X2)
2

= X2

1
∩ X2

2

= Y1 ∩ Y2. (8)

The pair (X1 ∪ X2, (X1 ∪ X2)
2) is also an object oriented

concept.
For a set of objectsX ⊆ U , from property (iii) we

have (X23)2 = X2 and hence an object oriented concept
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Fig. 1. An object oriented concept lattice

(X23, X2). For a set of propertiesY ⊆ V , we have another
object oriented concept(Y 3, Y 32). In the special case, for
a single attributey ∈ V , we have an object oriented concept
({y}3, {y}32) = (Ry, (Ry)2).

For two object oriented concepts(X1, Y1) and(X2, Y2), we
say that(X1, Y1) is a sub-concept of(X2, Y2) if and only if
X1 ⊆ X2, or equivalently, if and only ifY1 ⊆ Y2.

For the formal context of Table I, the corresponding object
oriented formal concept lattice is given by Figure 1. For sim-
plicity, a set is denoted by listing its elements. For example,
the set of objects{1, 2, 5, 6} is denoted by1256.

For a set of objectsX ⊆ U , we can construct a set of
propertiesX2. It can be used to derive rules that determine
whether an object is inX . If an object has a property inX2,
the object must be inX . That is,

∀x ∈ U [x ∈ X ⇐= ∃y ∈ V (y ∈ X2 ∧ xRy)].

It can be re-expressed as a rule: forx ∈ U ,

x ∈ X ⇐=
∨

y∈X2

xRy. (9)

The reverse implication does not hold in general. To derive
a reverse implication, we construct another set of objects
X23 ⊆ X . For the set of objects, we have a rule: forx ∈ U ,

x ∈ X23 =⇒
∨

y∈X2

xRy. (10)

This can be shown as follows:

x ∈ X23 =⇒ xR ∩ X2 6= ∅

=⇒ ∃y ∈ V (xRy ∧ y ∈ X2)

=⇒
∨

y∈X2

xRy. (11)

In general,X is not the same asX23, which suggests that
one can not establish a double implication rule for an arbitrary
set of objects.

For a set of objectsX ⊆ U , the pair(X23, X2) is an object
oriented formal concept. From the propertyX232 = X2 and
the rule (9), it follows:

x ∈ X23 ⇐=
∨

y∈X2

xRy. (12)

By combining it with rule (10), we have a double implication
rule:

x ∈ X23 ⇐⇒
∨

y∈X2

xRy. (13)

The results can be extended to any object oriented formal
concept. For(X, Y ) = (Y 3, X2), we have a rule:

x ∈ X ⇐⇒
∨

y∈Y

xRy. (14)

That is, the set of objectsX and the set of propertiesY in
(X, Y ) uniquely determine each other.

B. The property oriented concept lattice

The property oriented concept lattice was introduced by
Düntsch and Gediga [3]. A pair(X, Y ), X ⊆ U, Y ⊆ V ,
is called a property oriented formal concept ifX = Y 2 and
Y = X3. If a property is possessed by an object inX then
the property must be inY . Furthermore, only propertiesY
are possessed by objects inX .

The family of all property oriented formal concepts forms
a lattice with meet∧ and join∨ defined by:

(X1, Y1) ∧ (X2, Y2) = (X1 ∩ X2, (X1 ∩ X2)
3)

= (X1 ∩ X2, (Y1 ∩ Y2)
23),

(X1, Y1) ∨ (X2, Y2) = ((Y1 ∪ Y2)
2, Y1 ∪ Y2)

= ((X1 ∪ X2)
32, Y1 ∪ Y2).

For a set of objectsX ⊆ U , we can construct a property
oriented formal concept(X32, X3). For a set of proper-
ties Y ⊆ V , there is a property oriented formal concept
(Y 2, Y 23).

For the formal context of Table I, the corresponding prop-
erty oriented formal concept lattice is given by Figure 2.

Data analysis in the property oriented concept lattice can be
carried out in the similar manner, but is focused on properties.

For a set of propertiesY ⊆ V , we can construct a set
of objectsY 2. It can be used to derive rules that determine
whether a property is inY . If a property is possessed by an
object inY 2, the property must be inY . That is,

∀y ∈ V [∃x ∈ U(x ∈ Y 2 ∧ xRy) =⇒ y ∈ Y ].

It can be re-expressed as a rule: fory ∈ V ,
∨

x∈Y 2

xRy =⇒ y ∈ Y. (15)

In general, the reverse implication does not hold. In order
to derive a reverse implication, we construct another set of
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Fig. 2. A property oriented concept lattice

propertiesY 23 ⊆ Y . For the set of properties, we have a
rule: for y ∈ V ,

∨

x∈Y 2

xRy ⇐= y ∈ Y 23. (16)

Since X is not necessarily the same asX23, one can not
establish a double implication rule for an arbitrary set of
properties.

For a set of propertiesY ⊆ V , the pair (Y 23, Y 2) is a
property oriented formal concept. From the propertyY 232 =
Y 2 and the rule (15), it follows:

∨

x∈Y 2

xRy =⇒ y ∈ Y 23. (17)

By combining it with rule (16), we have a double implication
rule:

∨

x∈Y 2

xRy ⇐⇒ y ∈ Y 23. (18)

The results can be extended to any property oriented formal
concept. For(X, Y ) = (Y 2, X3), we have a rule:

∨

x∈X

xRy ⇐⇒ y ∈ Y. (19)

That is, the set of propertiesY and the set of objectsX in
(X, Y ) uniquely determine each other.

C. Connections of the two lattices

By the duality of approximation operators2 and 3, it
can be easily seen that the object oriented concept lattice is
isomorphic to the property oriented concept lattice. Givenan
object oriented concept:

(X, Y )o = (Y 3, X2)o, (20)

we can obtain a property oriented concept:

(Xc, Y c)p = (Y 3c, X2c)p

= ((Y c)2, (Xc)3)p. (21)

Conversely, from a property oriented concept one can obtain
an object oriented concept. For example, the object oriented
concept ({1}, {d})o corresponds to the property oriented
concept({2, 3, 4, 5, 6}, {a, b, c, e})p, and vice versa. However,
as shown earlier, their semantic interpretations are different.
One is used to carry out object oriented inference, and the
other is used to carry out property oriented inference. Fromthe
semantic viewpoint, it is meaningful to study both lattices[3].

For an easy comparison of the two lattices, we summary the
main results as follows. An object oriented concept(X, Y )o =
(Y 3, X2)o is characterized by a rule of the form:

x ∈ X ⇐⇒
∨

y∈Y

xRy. (22)

On the other hand, a property oriented concept(X, Y )p =
(Y 2, X3)p is characterized by another rule of the form:

∨

x∈X

xRy ⇐⇒ y ∈ Y. (23)

Several observations can be made. The two types of concepts
of the two lattices share a common feature, that is, each
concept consists of a subset of objects and a subset of
properties that determine each other. Their differences lie in
the representations of the involved subsets of objects and
properties. In the object oriented concept lattice, one uses
a subset of properties to construct a condition to describe a
subset of objects. In the property oriented lattice, the reverse
is true, namely, one uses a subset of objects to construct a
condition to describe a subset of properties. Furthermore,the
conditions are all expressed in terms of disjunction.

D. Relationships to formal concept lattice

One can establish a relation between the two lattices and
the standard formal concept lattice [3], [10].

For an object oriented concept(X, Y ) = (Y 3, X2), we
can re-express rule (22) as follows:

x ∈ Xc ⇐⇒
∧

y∈Y

¬(xRy). (24)

It is another kind of double implication with respect to the
pair (Xc, Y ). The rule suggests that if an object does not
have all properties inY , then the object does not belong to
X , and vice versa. Clearly, we have(Xc, Y ) = (Y 3c, Xcc2).
By settingXc asZ, we have a pair(Z, Y ) = (Y 3c, Zc2).

Based on the above discussion, we can define a new type
of formal concepts. A pair(X, Y ), X ⊆ U , Y ⊆ V , is called
a formal concept ifX = Y 3c andY = Xc2. By the duality
of 2 and3, we have:

X = Y 3c = Y c2 = X32,

Y = Xc2 = X3c = Y 32. (25)

That is,(X, Y ) is a formal concept if and onlyX = Y c2 and
Y = Xc2. Let us denote the operatorc2 by ∗. Then,(X, Y )
is a formal concept if and onlyX = Y ∗ andY = X∗.



TABLE II

THE COMPLEMENT FORMAL CONTEXT OFTABLE I

a b c d e

1 ×

2 × × ×

3 × × ×

4 × × ×

5 × × × ×

6 × ×

Suppose(X, Y ) = (Y c2, Xc2) is a formal concept. Con-
sider the pair(Y 3, Y ), we have:

(Y 3, Y ) = (Y 3, Xc2)

= (Y 3, Y 32). (26)

Thus, (Y 3, Y ) is an object oriented concept. Similarly, the
pair,

(X, X3) = (Y c2, X3)

= (X32, X3), (27)

is a property oriented concept. That is, a formal concept takes
the set of objects from an object oriented concept, and the set
of properties from a related property oriented concept.

For a formal concept,

(X, Y ) = (Y 3c, Xc2)

= (Y c2, X3c), (28)

we have a pair of rule:

x ∈ X ⇐⇒ x ∈ Y 3c

⇐⇒ x 6∈ Y 3

⇐⇒ xR ∩ Y = ∅

⇐⇒
∧

y∈Y

¬(xRy); (29)

∧

x∈X

¬(xRy) ⇐⇒ Ry ∩ X = ∅

⇐⇒ Ry ⊆ Xc

⇐⇒ y ∈ Xc2

⇐⇒ y ∈ Y. (30)

In rule (22), a set of objects is characterized based on the
presenceof at least oneproperty in a set of properties. In
the new rule (29), a set objects is characterized based on
the absenceof all properties in a set of properties. Similar
observation can be made regarding rules (23) and (30).

The family of all formal concepts forms a lattice with the
meet∧ and the join∨ defined as follows:

(X1, Y1) ∧ (X2, Y2) = (X1 ∩ X2, (X1 ∩ X2)
c2)

= (X1 ∩ X2, (Y1 ∪ Y2)
32),

(X1, Y1) ∨ (X2, Y2) = ((Y1 ∩ Y2)
c2, Y1 ∩ Y2)

= ((X1 ∪ X2)
32, Y1 ∩ Y2).
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c
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Fig. 3. The formal concept lattice of the formal context in Table II

This lattice is isomorphic to both object oriented and property
oriented concept lattices. For the new lattice, we define the
sub-concept relationship as follows. A concept(X1, Y1) is
sub-concept of(X2, Y2) if only if X1 ⊆ X2, or equivalently,
if and only if Y1 ⊇ Y2. That is, a smaller set of objects is
characterized by a larger set of properties.

For a binary relationR, its complement relation is defined
by:

Rc = {(x, y} | ¬(xRy)}. (31)

The formal context(U, V, Rc) is referred to as the complement
formal context of(U, V, R). The approximation operator2

in (U, V, R) and the derivation operator of formal concept
lattice of (U, V, Rc) determines each other [3], [10]. The
lattice of concepts(X, Y ) defined by conditionX = Y c2

and Y = Xc2 is the formal concept lattice of the formal
context(U, V, Rc).

An important difference between object oriented concepts,
property oriented concepts and formal concepts of formal
concept analysis is that the first two use disjunction in forming
a condition, while the last one uses conjunction [10]. Each of
them captures a particular aspect of knowledge embedded in
a formal context.

The complement formal context of Table I is given in Ta-
ble II. The corresponding concept lattice is given in Figure3.
It is a combination of the object oriented concept lattice in
Figure 1 and the property oriented concept lattice in Figure2.
All three lattices are isomorphic to each other.

E. Summary

The main results of the three types of concepts and the
corresponding concept lattices are summarized below.

• Object oriented concept lattice

– Definition:
(X, Y ) is an object oriented concept if and only if
X = Y 3 andY = X2.



– Lattice operations:

(X1, Y1) ∧ (X2, Y2) = ((X1 ∩ X2)
23, Y1 ∩ Y2),

(X1, Y1) ∨ (X2, Y2) = (X1 ∪ X2, (Y1 ∪ Y2)
32).

– Inference rule: for allx ∈ U ,

x ∈ X ⇐⇒
∨

y∈Y

xRy.

• Property oriented concept lattice
– Definition:

(X, Y ) is a property oriented concept if and only if
X = Y 2 andY = X3.

– Lattice operations:

(X1, Y1) ∧ (X2, Y2) = (X1 ∩ X2, (Y1 ∩ Y2)
23),

(X1, Y1) ∨ (X2, Y2) = ((X1 ∪ X2)
32, Y1 ∪ Y2).

– Inference rule: for ally ∈ V ,
∨

x∈X

xRy ⇐⇒ y ∈ Y.

• Formal concept lattice of the formal context(U, V, Rc)

– Definition:
(X, Y ) is a formal concept if and only ifX = Y c2

andY = Xc2.
– Lattice operations:

(X1, Y1) ∧ (X2, Y2) = (X1 ∩ X2, (Y1 ∪ Y2)
32),

(X1, Y1) ∨ (X2, Y2) = ((X1 ∪ X2)
32, Y1 ∩ Y2).

– Inference rules: for allx ∈ U andy ∈ V ,

x ∈ X ⇐⇒
∧

y∈Y

¬(xRy),

∧

x∈X

¬(xRy) ⇐⇒ y ∈ Y.

The relationships between the three types of concepts are
summarized as follows.

• If (X, Y ) = (Y 3, X2) is an object oriented concept,
then

– (Xc, Y c) is a property oriented concept,
– (Xc, Y ) = (Y c2, Y ) is a formal concept of the

formal context(U, V, Rc).
• If (X, Y ) = (Y 2, X3) is a property oriented concept,

then
– (Xc, Y c) is an object oriented concept,
– (X, Y c) = (X, Xc2) is a formal concept of the

formal context(U, V, Rc).
• If (X, Y ) = (Y c2, Xc2) is a formal concept of the

formal context(U, V, Rc), then
– (Xc23, Y ) = (Y 3, Y ) is an object oriented concept,
– (X, Y c23) = (X, X3) is a property oriented con-

cept.
Each type of concepts captures a particular aspect of data.

The three concept lattices are related, but different from
each other. They collectively provide additional tools fordata
analysis.

IV. CONCLUSION

There are at least three possible directions in comparing
and combining the theory of rough sets and formal concept
analysis. One is the introduction of the notions of rough
set theory, for example, approximation operators, into formal
concept analysis. The second option is the introduction of the
notions of concept analysis into rough set theory. The third
option to combine the two theories into a common, and more
general, framework.

This paper deals with the introduction of the notions of
formal concept analysis to rough set theory, which leads to
new, different interpretations and representations of formal
concepts. Based on the approximation operators, three concept
lattices are introduced and examined. They are different from
and related to formal concepts in formal concept analysis.
Rough set theory focuses on the disjunctive description of
concepts, while formal concept analysis focuses on conjunc-
tive description of concepts. The combination of the two views
may bring more insights into data analysis.
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