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Abstract— An alternative formulation of rough set theory can
A FORMAL CONTEXT

be developed based on a binary relation between two universe
one is a finite set of objects and the other is a finite set of [ Ta[bJc[d]

X|| o

properties. Rough set approximation operators are defined ith 1] x x | x
respect to the binary relation. Three concept lattices are an- 2] x X
structed based on approximation operators. They are diffeent 3 X X
from, but related to, the concept lattice built in formal concept 4 X X
analysis. Through the study of the introduced concept lattes, o> || x
one can obtain an in-depth understanding of data analysis lisg 6 x| x a
rough set theory.
. INTRODUCTION concept lattices in data analysis [10]. The objective 0§ thi

Rough set theory [7], [8] and formal concept analysis [2], paper is to extend the results of these studies and to pravide
[9] provide two related methods for data analysis [3], [10]. more systematic examination of concept lattices in rough se
They study and model the notion of concepts from different theory.
perspectives. The central notions of rough set theory ae th
indiscernibility of objects with respect to a set of projpest

and the induced approximation operators. The central nstio Il. FORMAL CONTEXTS AND APPROXIMATION

of formal concept analysis are formal concepts and concept OPERATORS

lattice. Proposals have been made to combine these two

theories in a common framework [1], [3], [4], [5], [10], [11] Let U andV be any two finite nonempty sets. Elements of

On the one hand, one can introduce the notion of concep/ are called objects, and elementsiofare called properties

lattice into rough set theory [3], [10]. On the other hand, OF attributes. The set of object$ is described by the set of

one can introduce the notion of approximation operators int Properties. More precisely, the relationships betweerabj

formal concept analysis [4], [5], [6], [11]. and properties are described by a binary relafidipetween/
The classical rough set theory is developed based on a@ndV, which is a subset of the Cartesian prodlick V. The

equivalence (indiscernibility) relation on a universe bfaxts.  triplet (U, V, R) is called a formal context in formal concept

Generalized formulation has been proposed by using a binar@nalysis, and an approximation space in rough set theory.

relation on two universes, one is a set of objects and the In a formal contex{U, V, R), for a pair of elements € U

other is a set of properties [3], [13]. A binary relation orotw andy € V, if (z,y) € R, also written astRy, we say that:

universes is commonly known as a formal context in formal has the property, or the propertyy is possessed by object

concept analysis. It serves as a common basis for rough set. Table | is an example of a formal context. In this table, for

theory and formal concept analysis. example, object has properties, c,d, ande. The property
Duintsch and Gediga, following the study of modal logics, a is possessed by objects2, 5, and6.

defined modal-style operators based on a binary relatign [1] The binary relation can be equivalently expressed in two

[3]. The derivation operator of formal concept analysis is a additional forms. An object € U has the set of properties:

polarity or sufficiency operator used in modal logics, anel th

rough set approximation operators are in fact the necessity zR={yeV|zRy} CV. (1)

and possibility operators used in modal logics [3], [12]eTh

formulation in terms of modal-style operators enables us toA propertyy is possessed by the set of objects:

gain more insights into theories of rough sets and formal

concept analysis. Ry={x €U |zRy} CU. (2)
Duntsch and Gediga introduced a concept lattice con-

structed based on approximation operators [3]. Yao inttedu  The three different representations uniquely determireh ea

another concept lattice and compared the roles of differentother, namelyxzRy <— y € R <= x € Ry. One can



extendzR to a subsetX C U and Ry to a subsely” C V:

XR = |J 2R,
reX

RY = URy. (3)
yey

A property in X R is possessed bat least oneobject in X,
and an object inR Y hasat least oneproperty inY'.

With respect to a formal context/, V, R), we define a pair
of dual approximation operators, : 2V — 2V

X {yeV |VeeU(xRy =z € X)}
{ye V| Ry C X},

{yeV |z eURyrnze X)}
{yeV|RynX #0}

UzR

reX

XR.

(4)
X <

(5)

They are related byX°"¢ = X© and X¢°¢ = X", where

¢ denotes the complement of a set. By definition, an object
having a property inX" is necessarilyin X, and an object
having a property inX is only possiblyin X. Thus, the
operators’ and® are also referred to as the necessity and the
possibility operators [3].

If we assume thaRy # ) for all y € V, namely, each
property must be possessed by at least one objett, iwe
have X" C X°.

Conversely, we define a pair of dual approximation opera-
tors,B,¢: 2V — 2U:

y® {reU|VyeV(@Ry=ye<cY)}
{reU|zRCY},
{reU|JyeV(@RyAyeY)}
{xeU|zRNY # 0}

U Ry,

yey

RY.

(6)

Y<>

(7)

The same symbols are used for both operators ft8no 2V,
and from2V to 2Y. Their roles can be easily seen from the
context.

The pair of approximation operators have the properties: fo
X,Xl,XQ cU andY, Yl,}/g cvVv,

X1 C Xy = [X] € X5, X? C X7,
Vi €Y, = [V C Yy, Y° C YY),
x 00 ngXOD,

y&o gngoD,

(iii) X©00 = x°
XD()D — XD
YODO — Y<>
YDOIZ] — YD

(iv) (X1NX9)" = X7 N X7,
(X1 UX2)° =XPUXy,
(Y1nY2)” =Y NYy,
V1UY2)? =Y UYy.

As an example, we show thaf"°" = X°©.

(=) Assumey € X"°", we haveRy C X"°. Therefore,
forall 2 € U, zRy = = € X"°, namely,2Ry = zR N
X" £ (. Thus, for allz € U, xRy implies that there exists a
z € V suchthattRzAz € X". The conditionz € X" implies
Rz C X. Combining it withz Rz results inx € X. Therefore,
for all x € U, xRy impliesz € X. That is,y € X".

(«<=) Assume thaty € X". Then for allz € U, xRy —
zRN XY # (. It implies that for allz € U, 2Ry = = €
XB¢. 1t follows thaty € X=°F.

The equalityX °P¢ = X follows from X=°C
duality of © and .

= X" by the

IIl. FORMAL CONCEPTLATTICES BASED ON

APPROXIMATION OPERATORS

Based on the notion of approximation operators, three
concept lattices are introduced [3], [10].

A. The object oriented concept lattice

The object oriented concept lattice was introduced by
Yao [10]. A pair(X,Y), X CU,Y C V, is called an object
oriented formal concept ik = Y© andY = X". If an object
has a property ift” then the object belongs t&. Furthermore,
only objects inX have properties irY". The set of objects(
is called the extension of the concdpt,Y’), and the set of
the propertieg” is called the intension. The intension can be
used to construct the expressigh_,- xRy that describes the
objects in the extension.

The family of all object oriented concepts forms a lattice.
The meetA and the joinv are defined by:

(X1, Y1) A (X2, Y2) = (1NY2)%,YiNY2)
= (X1nX2)", Y1 NYs),
(X1, Y1)V (X2, Y) = (X;1UXy, (X1UX9)Y)

(X1 U X, (Y1 UY)®D).

From the definition and properties (iii) and (iv), one canifyer
that the paif(Y1NY2)?, Y1NY>) is an object oriented concept.

More specifically,
(r1NYz)®)" (XY nx3H))7)
(Xl ) XZ)DOD

= (X;1NXy)"
= X7NXJ
Y1 NYa. (8)
The pair (X; U X5, (X1 U X3)7) is also an object oriented

concept.
For a set of objectsX C U, from property (iii) we
have (X"°)? = X" and hence an object oriented concept



(123456, abede) For a set of object& C U, the pair(X“°, X") is an object

oriented formal concept. From the propeXy’“® = X© and

the rule (9), it follows:
(1256, acd) (12346, bede)

ze X"« \/ 2Ry (12)
yeXP®

(12, cd) (1346, bde) By combining it with rule (10), we have a double implication
rule:
/‘ re X = \/ Tz Ry. (13)
(1,d) (346, b) yex®
\ / The results can be extended to any object oriented formal
) concept. For(X,Y) = (Y, X"), we have a rule:
zeX < \/ zRy. (14)

Fig. 1. An object oriented concept lattice yey

That is, the set of object¥ and the set of propertie® in

) (X,Y) uniquely determine each other.
(X"¢ X5). For a set of properties C V, we have another

object oriented concegty ®,Y°"). In the special case, for
a single attributey € V, we have an object oriented concept B. The property oriented concept lattice
{y}°, {y}°") = (Ry, (Ry)"). The property oriented concept lattice was introduced by
For two object oriented conceptX;, Y7) and(Xs, Y2), we Duntsch and Gediga [3]. A paifX,Y), X C U,Y C V,
say that(X;,Y1) is a sub-concept ofX»,Y>) if and only if  is called a property oriented formal conceptif= Y and
X1 C Xo, or equivalently, if and only ifY; C Ys. Y = X°. If a property is possessed by an objectinthen
For the formal context of Table I, the corresponding object the property must be iY". Furthermore, only properties
oriented formal concept lattice is given by Figure 1. For-sim are possessed by objectsin
plicity, a set is denoted by listing its elements. For exampl The family of all property oriented formal concepts forms
the set of objectd1,2,5,6} is denoted byl 256. a lattice with meet\ and joinVv defined by:
For a set of objectsX C U, we can construct a set of

propertiesX . It can be used to derive rules that determine (X1, Y1) A (X2, Y2) (X110 X2, (X1 NX2)°)
whether an object is ik. If an object has a property iX°, = (XinNXy, (Y1NY3)™0),
the object must be iX. That is, (X1,Y1) V (X2, Y2) = ((Y1UYy)" yl UYs)
VreUlz € X <=3y € V(y € X" AzRy)]. = (X1UX2)°" Y1 UYs).
It can be re-expressed as a rule: foe U, For a set of objectsY C U, we can construct a property
oriented formal conceptX®", X¢). For a set of proper-
reX = \/ zRy. (9) ties Y C V, there is a property oriented formal concept
yeX® (Y2, V).

For the formal context of Table I, the corresponding prop-
erty oriented formal concept lattice is given by Figure 2.

Data analysis in the property oriented concept lattice @an b
carried out in the similar manner, but is focused on propsrti
re X — \/ zRy. (10) For a set of propertie¥ C V, we can construct a set

yEXD of objectsY". It can be used to derive rules that determine

whether a property is ifY". If a property is possessed by an
object inY'", the property must be ify. That is,

The reverse implication does not hold in general. To derive
a reverse implication, we construct another set of objects
X"° C X. For the set of objects, we have a rule: foe U,

This can be shown as follows:

oo [m]
T€X = zRNX"#0 VyeV[@zeU(x e Y? AxRy) =y €Y].
= JycV(@Ryryec X")
It can be re-expressed as a rule: foe V,
= \/ xRy. (12)
yex?® \/ TRy = yeY. (15)

In general, X is not the same a&“°, which suggests that vEeY®

one can not establish a double implication rule for an abjtr  In general, the reverse implication does not hold. In order
set of objects. to derive a reverse implication, we construct another set of



(123456, abcde)

(125,acde) (23456, abee)

N

(¢, 0)

Fig. 2. A property oriented concept lattice

propertiesY”® C Y. For the set of properties, we have a
rule: fory e V,

\/ 2Ry «<—=yeY®° (16)
zeY"®

Since X is not necessarily the same a87°, one can not
establish a double implication rule for an arbitrary set of
properties.

For a set of propertiey” C V, the pair(Y"°,Y") is a
property oriented formal concept. From the propéfty®®
Y™ and the rule (15), it follows:

\/ zRy — y € Y"°.
zeY®

By combining it with rule (16), we have a double implication
rule:

17)

\/ TRy <=y c Y"°.
TeY®

(18)

The results can be extended to any property oriented forma

concept. For X,Y) = (Y, X®), we have a rule:
\/ TRy <= yeY.
rzeX
That is, the set of propertieg and the set of objectX in
(X,Y) uniquely determine each other.

(19)

C. Connections of the two lattices
By the duality of approximation operatof$ and ©, it

Conversely, from a property oriented concept one can obtain
an object oriented concept. For example, the object oriente
concept ({1},{d}), corresponds to the property oriented
concept({2,3,4,5,6},{a,b,c, e}),, and vice versa. However,
as shown earlier, their semantic interpretations are reiffe
One is used to carry out object oriented inference, and the
other is used to carry out property oriented inference. Riam
semantic viewpoint, it is meaningful to study both latti¢8ks

For an easy comparison of the two lattices, we summary the
main results as follows. An object oriented concgptY ), =
(Y°,X"), is characterized by a rule of the form:

r € X < \/ rRy.
yey

(22)

On the other hand, a property oriented conceftY’), =
(Y9, X°), is characterized by another rule of the form:

\/ 2Ry <=y eY. (23)
rxeX

Several observations can be made. The two types of concept
of the two lattices share a common feature, that is, each
concept consists of a subset of objects and a subset of
properties that determine each other. Their differenadnli

the representations of the involved subsets of objects and
properties. In the object oriented concept lattice, ones use
a subset of properties to construct a condition to describe a
subset of objects. In the property oriented lattice, thenss

is true, namely, one uses a subset of objects to construct &
condition to describe a subset of properties. Furtherntbee,
conditions are all expressed in terms of disjunction.

D. Relationships to formal concept lattice

One can establish a relation between the two lattices and
the standard formal concept lattice [3], [10].

For an object oriented concepk,Y) = (Y°, X"), we
fan re-express rule (22) as follows:

r € X <= /\ —(zRy).

yey

(24)

It is another kind of double implication with respect to the
pair (X, Y). The rule suggests that if an object does not
have all properties irY’, then the object does not belong to
X, and vice versa. Clearly, we hay& ¢, Y) = (Y ¢, X)),
By setting X as Z, we have a paifZ,Y) = (Y °¢, Z7).

Based on the above discussion, we can define a new type
of formal concepts. A paifX,Y), X CU,Y CV, is called

can be easily seen that the object oriented concept lattice Ia formal concept ifY = Y°¢ andY = X°°. By the duality

isomorphic to the property oriented concept lattice. Giaen
object oriented concept:

(X,Y)o = (Y, X7),, (20)
we can obtain a property oriented concept:
(X9Y) = (YO°,X%),
= (Y97 (X)) (21)

of © and®, we have:

X =Y% =Yy = x°°,

Y = X7 = X9 =Y°", (25)

That is,(X,Y) is a formal concept if and onlx = Y~ and
Y = X°O. Let us denote the operatéif by *. Then,(X,Y)
is a formal concept if and onl)\ = Y* andY = X*.



TABLE I (123456, 0)

THE COMPLEMENT FORMAL CONTEXT OFTABLE |

[ [alblcld]e]

1 x (125,b) (23456, d)

2 X X | X

3| x X | X

4 X X X

> X (25, bde) (3456, cd)

5, bed 34, acd
Suppose X,Y) = (Y, X7) is a formal concept. Con- (5, bede) (34, acd)
sider the paifY®,Y), we have: \/
YY) = (Y°,XO) (¢, abede)
= (Y°,Y°9). (26)

) ) ) o Fig. 3. The formal concept lattice of the formal context irblEall
Thus, (Y°,Y) is an object oriented concept. Similarly, the

pair,
o O vo This lattice is isomorphic to both object oriented and prope
(X,X°%) = (YO, X°) . . : .
b v oriented concept lattices. For the new lattice, we define the
= (X7, X7), (27)  sub-concept relationship as follows. A concdpf;,Y;) is
is a property oriented concept. That is, a formal concemtgak Sbe CéOhC?pth}Engg 5;2/) |fT(r)]nIy if X, C )I%, or eqlglveg)lently,
the set of objects from an object oriented concept, and the s anad only it 2 atis, a smaller set of objects is

of properties from a related property oriented concept. characterized by a larger set of properties. o _
For a formal concept, For a binary relationR, its complement relation is defined

by:
(XY) = (Y°°,XN) R ={(z,y} | ~(zRy)}. (31)
(Y, X°°), (28) |
The formal contex{U, V, R°) is referred to as the complement
we have a pair of rule: formal context of (U, V, R). The approximation operatdt
Se n (U,V,R) and the derivation operator of formal concept
T€EX = =z€Y lattice of (U, V, R°) determines each other [3], [10]. The
= zgY° lattice of conceptgX,Y) defined by conditionX = Y~
— zRNY =0 andY = X< is the formal concept lattice of the formal
— /\ ~(zRy): (29) conte>_<t(U, V, RC)._ _ _
Jev An |mporftant difference between object oriented concepts,
property oriented concepts and formal concepts of formal
/\ -(zRy) <= RynNnX=1»0 concept analysis is that the first two use disjunction in fagnm
zeX a condition, while the last one uses conjunction [10]. Ealch o
<= RyCX°¢ them captures a particular aspect of knowledge embedded ir
= yec X~ a formal context. o
— yev (30) The complement formal context of Table | is given in Ta-

ble Il. The corresponding concept lattice is given in Fig8re
In rule (22), a set of objects is characterized based on thdt is a combination of the object oriented concept lattice in
presenceof at least oneproperty in a set of properties. In Figure 1 and the property oriented concept lattice in Figure
the new rule (29), a set objects is characterized based ol three lattices are isomorphic to each other.
the absenceof all properties in a set of properties. Similar
observation can be made regarding rules (23) and (30).

The family of all formal concepts forms a lattice with the
meetA and the joinv defined as follows: The main results of the three types of concepts and the

corresponding concept lattices are summarized below.
X1 N Xo, (X1 N X)) ) i .
o0 « Object oriented concept lattice

X1 01X, (1 UY) ™), — Definition:
(Y1 NY2)",YiNYs) (X,Y) is an object oriented concept if and only if
(X1 UX5)%", V1 NYs). X =Y%andY = X°.

E. Summary

(X1, Y1) A (X2, Y2) =

(X1, 1)V (X2, Ys) =

(
(
(
(



— Lattice operations:
(X1,Y1) A (X2,Ys) = (X1 N X2)7°, Y1 NYa),
(X1,Y1) V (X2,Y2) = (X1 U Xa, (Y1 UY2)°7).
— Inference rule: for alle € U,
€ X< \/ T Ry.
yey
« Property oriented concept lattice
— Definition:
(X,Y) is a property oriented concept if and only if
X =Y" andY = X°.
— Lattice operations:
(X1, Y1) A (X2, Y2) = (X1 N X, (Y1 NY2)79),
(X1,Y1) V (X2,Y5) = (X1 U X2)°", Y, UY?).
— Inference rule: for ally € V,

\/J:Ry<:>y€Y.

reX
» Formal concept lattice of the formal conteXf, V, R¢)
— Definition:
(X,Y) is a formal concept if and only if{ = Y
andY = X7,

— Lattice operations:
(X1, Y1) A (X2,Y2) = (X1 N Xa, (V1 UY2)°7),
(X1,Y1) V (X2,Y5) = (X1 U X)) Y1 NYs).

— Inference rules: for alk € U andy € V,

reX — /\ —(zRy),
yey
/\ -(zRy) <= yevY.

rzeX

The relationships between the three types of concepts are

summarized as follows.
o If (X,Y) = (Y°,X") is an object oriented concept,
then
— (X°,Y®) is a property oriented concept,
- (X©)Y) = (YPY) is a formal concept of the
formal context(U, V, R°).
o If (X,Y) = (Y",X°) is a property oriented concept,
then
— (X°,Y*) is an object oriented concept,
- (X,Y°) = (X,X°") is a formal concept of the
formal context(U, V, R°).
o If (X,Y) = (Y°7,X<7) is a formal concept of the
formal context(U, V, R¢), then
— (XP°Y) = (Y°,Y) is an object oriented concept,
- (X,Y*P®) = (X, X°) is a property oriented con-
cept.

IV. CONCLUSION

There are at least three possible directions in comparing
and combining the theory of rough sets and formal concept
analysis. One is the introduction of the notions of rough
set theory, for example, approximation operators, intonfdr
concept analysis. The second option is the introductiomef t
notions of concept analysis into rough set theory. The third
option to combine the two theories into a common, and more
general, framework.

This paper deals with the introduction of the notions of
formal concept analysis to rough set theory, which leads to
new, different interpretations and representations ofmedr
concepts. Based on the approximation operators, threeepbnc
lattices are introduced and examined. They are differemh fr
and related to formal concepts in formal concept analysis.
Rough set theory focuses on the disjunctive description of
concepts, while formal concept analysis focuses on corjunc
tive description of concepts. The combination of the twavge
may bring more insights into data analysis.
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