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Abstract. A basic notion shared by rough set analysis and formal concept anal-
ysis is the definability of a set of objects based on a set of properties. The two
theories can be compared, combined and applied to each other based on defin-
ability. In this paper, the notion of rough set approximations is introduced into
formal concept analysis. Rough set approximations are defined by using a sys-
tem of definable sets. The similar idea can be used in formal concept analysis.
The families of the sets of objects and the sets of properties established in for-
mal concept analysis are viewed as two systems of definable sets. The approxi-
mation operators are then formulated with respect to the systems. Two types of
approximation operators, with respect to lattice-theoretic and set-theoretic inter-
pretations, are studied. The results provide a better understanding of data analysis
using rough set analysis and formal concept analysis.

1 Introduction

Definability deals with whether and how a set can be defined in order to be analyzed
and computed [38]. A comparative examination of rough set analysis and formal con-
cept analysis shows that each of them deals with a particular type of definability. While
formal concept analysis focuses on sets of objects that can be defined by conjunctions
of properties, rough set analysis focuses on disjunction of properties [33]. The common
notion of definability links the two theories together. One can immediately adopt ideas
from one to the other [33, 34]. On the one hand, the notions of formal concepts and for-
mal concept lattices can be introduced into rough set analysis by considering different
types of formal concepts [34]. On the other hand, rough set approximation operators
can be introduced into formal concept analysis by considering a different type of defin-
ability [8, 35]. The combination of the two theories would produce new tools for data
analysis.

An underlying notion of rough set analysis is the indiscernibility of objects [12,
13]. By modelling indiscernibility as an equivalence relation, one can partition a finite
universe of objects into a family of pair-wise disjoint subsets called a partition. The par-
tition provides a granulated view of the universe. An equivalence class is considered as
a whole, instead of many individuals, and is viewed as an elementary definable subset.
In other words, one can only observe, measure, or characterize the equivalence classes.
The empty set and unions of equivalence classes are also treated as definable subsets.
In general, the system of such definable subsets is only a proper subset of the power



set of the universe. Consequently, an arbitrary subset of universe may not necessarily
be definable. It can be approximated from below and above by a pair of maximal and
minimal definable subsets.

Under the rough set approximation, there is a close connection between definabil-
ity and approximation. A definable set of the universe of objects must have the same
approximations [2]. That is, a set of objects is definable if and only if its lower approx-
imation equals to its upper approximation.

Formal concept analysis is developed based on a formal context given by a binary
relation between a set of objects and a set of properties. From a formal context, one can
construct (objects, properties) pairs known as the formal concepts [6, 22]. The set of
objects of a formal concept is referred to as the extension, and the set of properties as
the intension. They uniquely determine each other. The family of all formal concepts is
a complete lattice. The extension of a formal concept can be viewed as a definable set
of objects, although in a sense different from that of rough set analysis [33, 34]. In fact,
the extension of a formal concept is a set of indiscernible objects with respect to the
intension. Based on the properties in the intension, all objects in the extension cannot
be distinguished. Furthermore, all objects in the extension share all the properties in the
intension. The collection of all the extensions, sets of objects, can be considered as a
different system of definable sets [35]. An arbitrary set of objects may not be an exten-
sion of a formal concept. The sets of objects that are not extensions of formal concepts
are regarded as undefinable sets. Therefore, in formal concept analysis, a different type
of definability is proposed.

Saquer and Deogun proposed to approximate a set of objects, a set of properties, and
a pair of a set of objects and a set of properties, based on a formal concept lattice [16,
17]. Huet al.proposed a method to approximate a set of objects and a set of properties
by using join- and meet-irreducible formal concepts with respect to set-theoretic opera-
tions [8]. However, their formulations are slightly flawed and fail to achieve such a goal.
It stems from a mixed-up of the lattice-theoretic operators and set-theoretic operators.
To avoid their limitation, a clear separation of two types of approximations is needed. In
this paper, we propose a framework to examine the issues of rough set approximations
within formal concept analysis. We concentrate on the interpretations and formulations
of various notions. Two systems are examined for the definitions of approximations, the
formal concept lattice and the system of extensions of all formal concepts.

The rest of the paper is organized as follows. In Section 2, we discuss three for-
mulations of rough set approximations, subsystem based formulation, granule based
formulation and element based formulation. In Section 3, formal concept analysis is
reviewed. In Section 4, we apply the notion of rough set approximations into formal
concept analysis. Two systems of definable sets are established. Based on each system,
different definitions of approximations are examined. Section 5 discusses the existing
studies and investigates their differences and connections from the viewpoint of approx-
imations.
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2 Rough Set Approximations

The rough set theory is an extension of classical set theory with two additional approx-
imation operators [28]. It is a useful theory and tool for data analysis. Various formu-
lations of rough set approximations have been proposed and studied [30–32]. In this
section, we review the subsystem based formulation, granule based formulation and el-
ement based formulation, respectively. In the subsystem based formulation, a subsystem
of the power set of a universe is first constructed and the approximation operators are
then defined using the subsystem. In the granule based formulation, equivalence classes
are considered as the elementary definable sets, and approximations can be defined di-
rectly by using equivalence classes. In the element based formulation, the individual
objects in the equivalence classes are used to calculate approximations of a set of ob-
jects.

SupposeU is a finite and nonempty universe of objects. LetE ⊆ U × U be an
equivalence relation onU . The equivalence relation divides the universe into a family
of pair-wise disjoint subsets, called the partition of the universe and denoted byU/E.
The pairapr = (U,E) is referred to as an approximation space.

An approximation space induces a granulated view of the universe. For an object
x ∈ U , the equivalence class containingx is given by:

[x]E = {y | xEy}. (1)

Objects in[x]E are indistinguishable fromx. One is therefore forced to consider[x]E
as a whole. In other words, under an equivalence relation, equivalence classes are the
smallest non-empty observable, measurable, or definable subsets ofU . By extending the
definability of equivalence classes, we assume that the empty set and unions of some
equivalence classes are definable. The family of definable subsets contains the empty
set∅ and is closed under set complement, intersection and union. It is anσ-algebra
σ(U/E) ⊆ 2U with basisU/E, where2U is the power set ofU .

A set of objects not inσ(U/E) is said to be undefinable. An undefinable set must
be approximated from below and above by a pair of definable sets.

Definition 1. (Subsystem based definition)In an approximation spaceapr = (U,E),
a pair of approximation operators,apr, apr : 2U −→ 2U , is defined by:

apr(A) =
⋃
{X | X ∈ σ(U/E), X ⊆ A},

apr(A) =
⋂
{X | X ∈ σ(U/E), A ⊆ X}. (2)

The lower approximationapr(A) ∈ σ(U/E) is the greatest definable set contained
in A, and the upper approximationapr(A) ∈ σ(U/E) is the least definable set contain-
ing A.

Alternatively, the approximation operators can also be defined by using equivalence
classes.
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Definition 2. (Granule based definition)In an approximation spaceapr = (U,E), a
pair of approximation operators,apr, apr : 2U −→ 2U , is defined by:

apr(A) =
⋃
{[x]E | [x]E ∈ U/E, [x]E ⊆ A},

apr(A) =
⋃
{[x]E | [x]E ∈ U/E, A ∩ [x]E 6= ∅}. (3)

The lower approximation is the union of equivalence classes that are subsets ofA,
and the upper approximation is the union of equivalence classes that have a non-empty
intersection withA.

The element based definition is another way to define the lower and upper approxi-
mations of a set of objects.

Definition 3. (Element based definition)In an approximation spaceapr = (U,E), a
pair of approximation operators,apr, apr : 2U −→ 2U , is defined by:

apr(A) = {x | x ∈ U, [x]E ⊆ A},
apr(A) = {x | x ∈ U,A ∩ [x]E 6= ∅}. (4)

The lower approximation is the set of objects whose equivalence classes are subsets
of A. The upper approximation is the set of objects whose equivalence classes have
non-empty intersections withA.

The three formulations are equivalent, but with different forms and interpretations [32].
The lower and upper approximation operators have the following properties: for sets of
objectsA, A1 andA2,

(i). apr(A) = (apr(Ac))c,

apr(A) = (apr(Ac))c;
(ii). apr(A1 ∩A2) = apr(A1) ∩ apr(A2),

apr(A1 ∪A2) = apr(A1) ∪ apr(A2);
(iii). apr(A) ⊆ A ⊆ apr(A);
(iv). apr(apr(A)) = apr(A),

apr(apr(A)) = apr(A);
(v). apr(apr(A)) = apr(A),

apr(apr(A)) = apr(A).

Property (i) states that the approximation operators are dual operators with respect to
set complementc. Property (ii) states that the lower approximation operator is distribu-
tive over set intersection∩, and the upper approximation operator is distributive over
set union∪. By property (iii), a set lies within its lower and upper approximations.
Properties (iv) and (v) deal with the compositions of lower and upper approximation
operators. The result of the composition of a sequence of lower and upper approxima-
tion operators is the same as the application of the approximation operator closest to
A.

As shown by the following theorem, the approximation operators truthfully reflect
the intuitive understanding of the notion of definability [12, 35].
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Theorem 1. In an approximation spaceapr = (U,E), for a set of objectsA, apr(A) =
apr(A) if and only ifA ∈ σ(U/E).

An important implication of the theorem is that for an undefinable setA ⊆ U ,
we haveapr(A) 6= apr(A). In fact, apr(A) is a proper subset ofapr(A), namely,
apr(A) ⊂ apr(A).

The basic ideas of subsystem based formulation can be generalized by consider-
ing different subsystems that represent different types of definability [35]. The granule
based formulation and element based formulation can also be generalized by using dif-
ferent types of definable granules [29, 32, 37].

3 Formal Concept Analysis

Formal concept analysis deals with visual presentation and analysis of data [6, 22]. It
focuses on the definability of a set of objects based on a set of properties, and vice versa.

LetU andV be any two finite sets. Elements ofU are called objects, and elements of
V are called properties. The relationships between objects and properties are described
by a binary relationR betweenU andV , which is a subset of the Cartesian product
U × V . For a pair of elementsx ∈ U andy ∈ V , if (x, y) ∈ R, written asxRy, we
say thatx has the propertyy, or the propertyy is possessed by objectx. The triplet
(U, V,R) is called a formal context. By the terminology of rough set analysis, a formal
context is in fact a binary information table.

Based on the binary relation, we associate a set of properties to an object. An object
x ∈ U has the set of properties:

xR = {y ∈ V | xRy} ⊆ V. (5)

Similarly, a propertyy is possessed by the set of objects:

Ry = {x ∈ U | xRy} ⊆ U. (6)

By extending these notations, we can establish relationships between sets of objects and
sets of properties. This leads to two operators, one from2U to 2V and the other from
2V to 2U .

Definition 4. Suppose(U, V, R) is a formal context. For a set of objectsA ⊆ U , we
associate it with a set of properties:

A∗ = {y ∈ V | ∀x ∈ U(x ∈ A =⇒ xRy)}
= {y ∈ V | A ⊆ Ry}
=

⋂

x∈A

xR. (7)

For a set of propertiesB ⊆ V , we associate it with a set of objects:

B∗ = {x ∈ U | ∀y ∈ V (y ∈ B =⇒ xRy)}
= {x ∈ U | B ⊆ xR}
=

⋂

y∈B

Ry. (8)
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For simplicity, the same symbol is used for both operators. The actual role of the
operators can be easily seen from the context.

By definition,{x}∗ = xR is the set of properties possessed byx, and{y}∗ = Ry
is the set of objects having propertyy. For a set of objectsA, A∗ is themaximalset of
properties shared byall objects inA. For a set of propertiesB, B∗ is themaximalset
of objects that haveall properties inB.

The operators∗ have the following properties [6, 22]: forA,A1, A2 ⊆ U and
B, B1, B2 ⊆ V ,

(1). A1 ⊆ A2 =⇒ A∗1 ⊇ A∗2,

B1 ⊆ B2 =⇒ B∗
1 ⊇ B∗

2 ,

(2). A ⊆ A∗∗,

B ⊆ B∗∗,

(3). A∗∗∗ = A∗,

B∗∗∗ = B∗,

(4). (A1 ∪A2)∗ = A∗1 ∩A∗2,

(B1 ∪B2)∗ = B∗
1 ∩B∗

2 .

In formal concept analysis, one is interested in a pair of a set of objects and a set of
properties that uniquely define each other. More specifically, for(A, B) = (B∗, A∗),
we have [33]:

x ∈ A ⇐⇒ x ∈ B∗

⇐⇒ B ⊆ xR

⇐⇒
∧

y∈B

xRy;

∧

x∈A

xRy ⇐⇒ A ⊆ Ry

⇐⇒ y ∈ A∗

⇐⇒ y ∈ B. (9)

That is, the set of objectsA is defined based on the set of propertiesB, and vice versa.
This type of definability leads to the introduction of the notion of formal concepts [6,
22].

Definition 5. A pair (A, B), A ⊆ U , B ⊆ V , is called a formal concept of the context
(U, V,R), if A = B∗ and B = A∗. Furthermore,extent(A,B) = A is called the
extension of the concept, andintent(A,B) = B is called the intension of the concept.

Definition 6. For an objectx, the pair({x}∗∗, {x}∗) is a formal concept and called an
object concept. For a propertyy, the pair({y}∗, {y}∗∗) is a formal concept and called
a property concept.

The set of all formal concepts forms a complete lattice called a concept lattice,
denoted byL(U, V, R) or simplyL. The meet and join of the lattice are characterized
by the following basic theorem of concept lattices [6, 22].
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Theorem 2. The formal concept latticeL is a complete lattice in which the meet and
join are given by:

∧

t∈T

(At, Bt) = (
⋂

t∈T

At, (
⋃

t∈T

Bt)∗∗),

∨

t∈T

(At, Bt) = ((
⋃

t∈T

At)∗∗,
⋂

t∈T

Bt). (10)

whereT is an index set and for everyt ∈ T , (At, Bt) is a formal concept.

The order relation of the lattice can be defined based on the set inclusion relation [6,
22].

Definition 7. For two formal concepts(A1, B1) and(A2, B2), (A1, B1) is a sub-concept
of (A2, B2), written(A1, B1) ¹ (A2, B2), and(A2, B2) is a super-concept of(A1, B1),
if and only ifA1 ⊆ A2, or equivalently, if and only ifB2 ⊆ B1.

A more general (specific) concept is characterized by a larger (smaller) set of objects
that share a smaller (larger) set of properties.

The lattice-theoretic operators of meet (∧) and join (∨) of the concept lattice are
defined based on the set-theoretic operators of intersection (∩), union (∪) and the oper-
ators∗. However, they are not the same. An intersection of extensions (intensions) of a
family of formal concepts is the extension (intension) of a formal concept. A union of
extensions (intensions) of a family of formal concepts is not necessarily the extension
(intension) of a formal concept.

Example 1.The ideas of formal concept analysis can be illustrated by an example taken
from [35]. Table 1 gives a formal context, where the meaning of each property is given
as follows: a: needs water to live; b: lives in water; c: lives on land; d: needs chlorophyll
to produce food; e: two seed leaves; f: one seed leaf; g: can move around; h: has limbs;
i: suckles its offspring. Figure 1 gives the corresponding concept lattice. Consider two
formal concepts({3, 6}, {a, b, c}) and ({5, 6, 7, 8}, {a, d}). Their meet is the formal
concept:

({3, 6} ∩ {5, 6, 7, 8}, ({a, b, c} ∪ {a, d})∗∗) = ({6}, {a, b, c, d, f}),

and their join is the formal concept:

(({3, 6} ∪ {5, 6, 7, 8})∗∗, {a, b, c} ∩ {a, d}) = ({1, 2, 3, 4, 5, 6, 7, 8}, {a}).

The intersection of extensions of two concepts is the extension of their meet, and the
intersection of the intensions is the intension of their join. On the other hand, the union
of extensions of the two concepts is{3, 5, 6, 7, 8}, which is not the extension of any
formal concept. The union of the intensions is{a, b, c, d}, which is not the intension of
any formal concept.
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a b c d e f g h i

1. Leech × × ×
2. Bream × × × ×
3. Frog × × × × ×
4. Dog × × × × ×
5. Spike-weed× × × ×
6. Reed × × × × ×
7. Bean × × × ×
8. Maize × × × ×
Table 1.A formal context taken from [6]

(1,2,3,4,5,6,7,8;a)

(1,2,3,5,6;a,b) (3,4,6,7,8;a,c)

(3,6;a,b,c)

(5,6,7,8;a,d)

(5,6;a,b,d,f)

(6,7,8;a,c,d)

(6;a,b,c,d,f) (7;a,c,d,e)

(;a,b,c,d,e,f,g,h,i)

(5,6,8;a,d,f)

(6,8;a,c,d,f)

(1,2,3,4;a,g)

(1,2,3;a,b,g)

(3,4;a,c,g,h)

(3;a,b,c,g,h)

(2,3,4;a,g,h)

(2,3;a,b,g,h)

(4;a,c,g,h,i)

Fig. 1. Concept lattice for the context of Table 1, produced by “Formal Concept Calculator”
(developed by S̈oren Auer, http://www.advis.de/soeren/fca/).
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4 Approximations in Formal Concept Analysis

A formal concept is a pair of a definable set of objects and a definable set of properties,
which uniquely determine each other. The concept lattice is the family of all concepts
with respect to a formal context. Given an arbitrary subset of the universe of objects,
it may not be the extension of a formal concept. The set can therefore be viewed as an
undefinable set of objects. Following rough sets analysis, such a subset of the universe
of objects can be approximated by definable sets of objects, namely, the extensions of
formal concepts.

4.1 Approximations based on lattice-theoretic operators

One can develop the approximation operators similar to the subsystem based formula-
tion of rough set analysis. The concept lattice is used as the system of definable con-
cepts, and lattice-theoretic operators are used to define approximation operators.

For a set of objectsA ⊆ U , suppose we want to approximate it by the extensions of a
pair of formal concepts in the concept lattice. We can extend Definition 1 to achieve this
goal. In equation (2), set-theoretic operators∩ and∪ are replaced by lattice-theoretic
operators∧ and∨, the subsystemσ(U/E) by latticeL, and definable sets of objects
by extensions of formal concepts. The extensions of the resulting two concepts are the
approximations ofA.

Definition 8. (Lattice-theoretic definition) For a set of objectsA ⊆ U , its lower and
upper approximations are defined by:

lapr(A) = extent(
∨
{(X, Y ) | (X, Y ) ∈ L, X ⊆ A})

= (
⋃
{X | (X,Y ) ∈ L,X ⊆ A})∗∗,

lapr(A) = extent(
∧
{(X, Y ) | (X, Y ) ∈ L, A ⊆ X})

=
⋂
{X | (X, Y ) ∈ L,A ⊆ X}. (11)

The lower approximation of a set of objectsA is the extension of the formal con-
cept(lapr(A), (lapr(A))∗), and the upper approximation is the extension of the formal
concept(lapr(A), (lapr(A))∗). The concept(lapr(A), (lapr(A))∗) is the supremum
of those concepts whose extensions are subsets ofA, and(lapr(A), (lapr(A))∗) is the
infimum of those concepts whose extensions are supersets ofA.

For a formal concept(X,Y ), Xc may not necessarily be the extension of a formal
concept. The concept lattice in general is not a complemented lattice. The approxima-
tion operatorslapr andlapr are not necessarily dual operators.

Recall that the intersection of extensions is the extension of a concept, but the union
of extensions may not be the extension of a concept. It follows that(lapr(A), (lapr(A))∗)
is the smallest concept whose extension is a superset ofA. However, the concept
(lapr(A), (lapr(A))∗) may not be the largest concept whose extension is a subset ofA.
It may happen thatA ⊆ lapr(A). That is, the lower approximation ofA may not be a
subset ofA. The new approximation operators do not satisfy properties (i), (ii) and (iii).
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With respect to property (ii), they only satisfy a weak version known as monotonicity
with respect to set inclusion:

(vi). A1 ⊆ A2 =⇒ lapr(A1) ⊆ lapr(A2),

A1 ⊆ A2 =⇒ lapr(A1) ⊆ lapr(A2).

The following weak versions of property (iii) are satisfied:

(vii). lapr(A) ⊆ lapr(A),

(viii). A ⊆ lapr(A).

Both lapr(A) andlapr(A) are extensions of formal concepts. It follows that the oper-
atorslapr andlapr satisfy properties (iv) and (v).

Example 2.Given the concept lattice in Figure 1, consider a set of objectsA = {3, 5, 6}.
The family of subsets ofA that are extensions of concepts is:

{ ∅, {3}, {6}, {3, 6}, {5, 6} }.

The corresponding family of concepts is:

{ (∅, {a, b, c, d, e, f, g, h, i}), ({3}, {a, b, c, g, h}), ({6}, {a, b, c, d, f}),
({3, 6}, {a, b, c}), ({5, 6}, {a, b, d, f}) }.

Their supremum is({1, 2, 3, 5, 6}, {a, b}). The lower approximation islapr(A) =
{1, 2, 3, 5, 6}, which is indeed a superset ofA. The family of supersets ofA that are
extensions of concepts is:

{{1, 2, 3, 5, 6}, {1, 2, 3, 4, 5, 6, 7, 8}}.

The corresponding family of concepts is:

{ ({1, 2, 3, 5, 6}, {a, b}), ({1, 2, 3, 4, 5, 6, 7, 8}, {a}) }.

Their infimum is({1, 2, 3, 5, 6}, {a, b}). The upper approximation islapr(A) = {1, 2,
3, 5, 6}, which is the smallest concept whose extension containsA. AlthoughA is not
an extension of a concept, it has the same lower and upper approximations, in contrast
with Theorem 1.

With a finite set of objects and a finite set of properties, we obtain a finite lattice. The
meet-irreducible and join-irreducible concepts in a concept lattice can be used as the
elementary concepts. A concept in a finite concept lattice can be expressed as a join of a
finite number of join-irreducible concepts and can also be expressed as a meet of a finite
number of meet-irreducible concepts [1]. The extensions of meet-irreducible and join-
irreducible concepts are treated as elementary definable sets of objects. Approximation
operators can therefore be defined based on those elementary definable subsets.

The meet-irreducible and join-irreducible concepts can be defined as follows [1].
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Definition 9. In a concept latticeL, a concept(A,B) ∈ L is called join-irreducible
if and only if for all (X1, Y1), (X2, Y2) ∈ L, (A,B) = (X1, Y1) ∨ (X2, Y2) implies
(A,B) = (X1, Y1) or (A,B) = (X2, Y2). The dual notion is called meet-irreducible
for a concept(A,B) ∈ L if and only if for all (X1, Y1), (X2, Y2) ∈ L, (A,B) =
(X1, Y1) ∧ (X2, Y2) implies(A,B) = (X1, Y1) or (A,B) = (X2, Y2).

Let J(L) be the set of all join-irreducible concepts andM(L) be the set of all meet-
irreducible concepts inL. A concept(A,B) can be expressed by the join of join-
irreducible concepts that are the sub-concepts of(A,B) in J(L). That is

(A, B) =
∨
{(X,Y ) | (X,Y ) ∈ J(L), (X, Y ) ¹ (A,B)}. (12)

A concept(A,B) can also be expressed by the meet of meet-irreducible concepts that
are the super-concepts of(A,B) in M(L). That is

(A,B) =
∧
{(X, Y ) | (X, Y ) ∈ M(L), (A,B) ¹ (X, Y )}. (13)

The lower and upper approximations of a set of objects can be defined based on the
extensions of join-irreducible and meet-irreducible concepts [8].

Definition 10. For a set of objectsA ⊆ U , its lower and upper approximations are
defined by:

lapr(A) = extent(
∨
{(X, Y ) | (X, Y ) ∈ J(L), X ⊆ A})

= (
⋃
{X | (X,Y ) ∈ J(L), X ⊆ A})∗∗,

lapr(A) = extent(
∧
{(X, Y ) | (X, Y ) ∈ M(L), A ⊆ X})

=
⋂
{X | (X, Y ) ∈ M(L), A ⊆ X}. (14)

Ganter and Wille have shown that a formal concept in a concept lattice can be
expressed by the join of object concepts in which the object is included in the extension
of the formal concept [6]. That is, for a formal concept(A,B),

(A,B) =
∨
{({x}∗∗, {x}∗) | x ∈ A}.

A formal concept can also be expressed by the meet of property concepts in which the
property is included in the intension of the formal concept [6]. That is, for a formal
concept(A,B),

(A,B) =
∧
{({y}∗, {y}∗∗) | y ∈ B}.

Therefore, the lower and upper approximations of a set of objects can be defined based
on the extensions of object and property concepts.
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Definition 11. For a set of objectsA ⊆ U , its lower and upper approximations are
defined by object and property concepts:

lapr(A) = extent(
∨
{({x}∗∗, {x}∗) | x ∈ U, {x}∗∗ ⊆ A}),

= (
⋃
{{x}∗∗ | x ∈ U, x ∈ A})∗∗,

lapr(A) = extent(
∧
{({y}∗, {y}∗∗) | y ∈ V, A ⊆ {y}∗}),

=
⋂
{{y}∗ | y ∈ V,A ⊆ {y}∗}. (15)

In fact, this definition can be considered as the extension of granule based definition of
rough set approximations in Definition 2.

These definitions of lower and upper approximations are the same as the ones de-
fined in Definition 8. They are regarded as equivalent definitions with slightly different
interpretations.

Example 3.In the concept lattice in Figure 1, consider the same set of objectsA =
{3, 5, 6} in Example 2. The family of join-irreducible concepts is:

({1, 2, 3}, {a, b, g}), ({2, 3}, {a, b, g, h}),
({3}, {a, b, c, g, h}), ({4}, {a, c, g, h, i}),
({5, 6}, {a, b, d, f}), ({6}, {a, b, c, d, f}),
({7}, {a, c, d, e}), ({6, 8}, {a, c, d, f}),
(∅, {a, b, c, d, e, f, g, h, i}).

The join-irreducible concepts whose extensions are subsets ofA are:

({3}, {a, b, c, g, h}), ({5, 6}, {a, b, d, f}),
({6}, {a, b, c, d, f}), (∅, {a, b, c, d, e, f, g, h, i}).

Thus, according to the Definition 10, the lower approximation is

lapr(A) = extent(({3}, {a, b, c, g, h})
∨

({5, 6}, {a, b, d, f})
∨

({6}, {a, b, c, d, f})
∨

(∅, {a, b, c, d, e, f, g, h, i}))
= {1, 2, 3, 5, 6}.

The family of meet-irreducible concepts is:

({1, 2, 3, 4, 5, 6, 7, 8}, {a}), ({1, 2, 3, 5, 6}, {a, b}),
({3, 4, 6, 7, 8}, {a, c}), ({5, 6, 7, 8}, {a, d}),
({1, 2, 3, 4}, {a, g}), ({5, 6, 8}, {a, d, f}),
({2, 3, 4}, {a, g, h}), ({7}, {a, c, d, e}),
({4}, {a, c, g, h, i}).

The meet-irreducible concepts whose extensions are supersets ofA are:

({1, 2, 3, 4, 5, 6, 7, 8}, {a}), ({1, 2, 3, 5, 6}, {a, b}).
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The upper approximation is

lapr(A) = extent(({1, 2, 3, 4, 5, 6, 7, 8}, {a})
∧

({1, 2, 3, 5, 6}, {a, b})),
= {1, 2, 3, 5, 6}.

For the set of objectsA = {3, 5, 6}, its lower approximation equals to its upper ap-
proximation. One can see that approximations based on lattice-theoretic operators have
some undesirable properties. Other possible formulations are needed.

The upper approximation operatorlapr is related to the operator∗. For any set of
objectsA ⊆ U , we can derive a set of propertiesA∗. For the set of propertiesA∗, we can
derive another set of objectsA∗∗. By property (3),(A∗∗, A∗) is a formal concept. By
property (2), we haveA ⊆ A∗∗. In fact,(A∗∗, A∗) is the smallest formal concept whose
extension containsA. That is, for a set of objectsA ⊆ U , its upper approximation is
lapr(A) = A∗∗.

Thus we can only obtain a weak version of Theorem 1.

Theorem 3. In a concept latticeL(U, V,R), if A is an extension of a concept, i.e.,
(A,A∗) is a concept, thenlapr(A) = lapr(A).

As shown by the examples, the reverse implication in the theorem is not true. This
is a limitation of the formulation based on lattice-theoretic operators.

The ideas of approximating a set of objects can be used to define operators that
approximate a set of properties. In contract to the approximations of a set of objects, the
lower approximation is defined by using meet, and the upper approximation is defined
by using join.

Definition 12. (Lattice-theoretic definition) For a set of propertiesB ⊆ V , its lower
and upper approximations are defined by:

lapr(B) = intent(
∧
{(X, Y ) | (X,Y ) ∈ L, Y ⊆ B})

= (
⋃
{Y | (X,Y ) ∈ L, Y ⊆ B})∗∗,

lapr(B) = intent(
∨
{(X, Y ) | (X,Y ) ∈ L,B ⊆ Y })

=
⋂
{Y | (X, Y ) ∈ L,B ⊆ Y }. (16)

Definition 13. For a set of propertiesB ⊆ V , its lower and upper approximations
based on the sets of join-irreducible and meet-irreducible concepts are defined by:

lapr(B) = intent(
∧
{(X, Y ) | (X, Y ) ∈ M(L), Y ⊆ B})

= (
⋃
{Y | (X, Y ) ∈ M(L), Y ⊆ B})∗∗,

lapr(B) = intent(
∨
{(X, Y ) | (X, Y ) ∈ J(L), B ⊆ Y })

=
⋂
{Y | (X,Y ) ∈ J(L), B ⊆ Y }. (17)
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Definition 14. For a set of propertiesB ⊆ V , its lower and upper approximations are
defined by object and property concepts:

lapr(B) = intent(
∧
{({y}∗, {y}∗∗) | y ∈ V, {y}∗∗ ⊆ B}),

= (
⋃
{{y}∗∗ | y ∈ V, y ∈ B})∗∗,

lapr(B) = intent(
∨
{({x}∗∗, {x}∗) | x ∈ U,B ⊆ {x}∗}),

=
⋂
{{x}∗ | x ∈ U,B ⊆ {x}∗}. (18)

The lower approximation of a set of propertiesB is the intension of the formal
concept((lapr(B))∗, lapr(B)), and the upper approximation is the intension of the
formal concept((lapr(B))∗, lapr(B)).

4.2 Approximations based on set-theoretic operators

By comparing with the standard rough set approximations, one can observe two prob-
lems of the approximation operators defined by using lattice-theoretic operators. The
lower approximation of a set of objectsA is not necessarily a subset ofA. Although a
set of objectsA is undefinable, i.e.,A is not the extension of a formal concept, its lower
and upper approximations may be the same. In order to avoid these shortcomings, we
present another formulation by using set-theoretic operators.

The extension of a formal concept is a definable set of objects. A system of definable
sets can be derived from a concept lattice.

Definition 15. For a formal concept latticeL, the family of all extensions is given by:

EXT (L) = {extent(X,Y ) | (X, Y ) ∈ L}. (19)

The systemEXT (L) contains the entire setU and is closed under intersection.
Thus,EXT (L) is a closure system [3]. Although one can define the upper approxi-
mation by extending Definition 1, one cannot define the lower approximation similarly.
Nevertheless, one can still keep the intuitive interpretations of lower and upper approxi-
mations. That is, the lower approximation is a maximal set inEXT (L) that are subsets
of A, and the upper approximation is a minimal set inEXT (L) that are supersets of
A. While an upper approximation is unique (e.g., there is a smallest set inEXT (L)
containingA), the maximal set contained inA is generally not unique.

Definition 16. (Set-theoretic definition)For a set of objectsA ⊆ U , its upper approx-
imation is defined by:

sapr(A) =
⋂
{X | X ∈ EXT (L), A ⊆ X}, (20)

and its lower approximation is a family of sets:

sapr(A) = {X | X ∈ EXT (L), X ⊆ A,

∀X ′ ∈ EXT (L)(X ⊂ X ′ =⇒ X ′ 6⊆ A)}. (21)
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The upper approximationsapr(A) is the same aslapr(A), namely,sapr(A) =
lapr(A). However, the lower approximation is different. An important feature is that a
set can be approximated from below by several definable sets of objects. In general, for
A′ ∈ sapr(A), we haveA′ ⊆ lapr(A).

Example 4.In the concept latticeL of Figure 1, the family of all extensionsEXT (L)
are:

EXT (L) = { ∅, {3}, {4}, {6}, {7},
{2, 3}, {3, 4}, {3, 6}, {5, 6}, {6, 8},
{1, 2, 3}, {2, 3, 4}, {6, 7, 8}, {5, 6, 8},
{1, 2, 3, 4}, {5, 6, 7, 8},
{1, 2, 3, 5, 6}, {3, 4, 6, 7, 8},
{1, 2, 3, 4, 5, 6, 7, 8} }.

For a set of objectsA = {3, 5, 6}, the lower approximation is given bysapr(A) =
{{3, 6}, {5, 6}}, which is a family of sets of objects. The upper approximation is given
by sapr(A) = {1, 2, 3, 5, 6}, which is a unique set of objects.

Since a concept in a finite concept lattice can be expressed as a meet of a finite
number of meet-irreducible concepts, the family of extensions of meet-irreducible con-
cepts can be used to generate the extensions of all concepts in a finite concept lattice
by simply using set intersection. Hence, one can use the family of the extensions of all
meet-irreducible concepts to replace the system of the extensions of all concepts in the
concept lattice.

Let EXT (M(L)) denote the family of extensions of all the meet-irreducible con-
cepts.EXT (M(L)) is a subset ofEXT (L). The extensions of concepts in the system
EXT (M(L)) are treated as elementary definable sets of objects. Therefore, the upper
approximation of a set of objects is the intersection of extensions inEXT (M(L)) that
are supersets of the set.

Definition 17. For a set of objectsA ⊆ U , its upper approximation is defined by:

sapr(A) =
⋂
{X | X ∈ EXT (M(L)), A ⊆ X}. (22)

This definition of upper approximation is the same as Definition 16. They are equivalent
but in different forms.

The lower approximation of a set of objects cannot be defined based on the system
EXT (M(L)). The meet of some meet-irreducible concepts, whose extensions are sub-
sets of a set of objects, is not necessarily the largest set that is contained in the set of
objects.

With respect to property (iii), we have:

(ix). A′ ⊆ A ⊆ sapr(A), for all A′ ∈ sapr(A).

That is,A lies within any of its lower approximation and upper approximation. For the
set-theoretic formulation, we have a theorem corresponding to Theorem 1.
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Theorem 4. In a concept latticeL(U, V, R), for a subset of the universe of objects
A ⊆ U , sapr(A) = A and sapr(A) = {A}, if and only if A is an extension of a
concept.

In the new formulation, we resolve the difficulties with the approximation operators
lapr andlapr. The lower approximation offers more insights into the notion of approx-
imations. In some situations, the union of a family of definable sets is not necessarily
a definable set. It may not be reasonable to insist on a unique approximation. The ap-
proximation of a set by a family of sets may provide a better characterization of the
set.

5 Related Works

In this section, we provide a review of the existing studies on the comparisons and
combinations of rough set analysis and formal concept analysis and their relevance to
the present study.

5.1 A brief review of existing studies

Broadly, we can classify existing studies into three groups. The first group may be
labeled as the comparative studies [5, 7, 9, 10, 15, 21, 23, 24, 33]. They deal with the
comparison of the two approaches with an objective to produce a more generalized
data analysis framework. The second group concerns the applications of the notions
and ideas of formal concept analysis into rough set analysis [5, 23, 34]. Reversely, the
third group focuses on applying concepts and methods of rough set analysis into formal
concept analysis [4, 8, 11, 16, 17, 20, 23, 34, 39]. Those studies lead to different types of
abstract operators, concept lattices and approximations.

Comparative studies

Kent examined the correspondence between similar notions used in both theories,
and argued that they are in fact parallel to each other in terms of basic notions, issues
and methodologies [9]. A framework of rough concept analysis was introduced as a
synthesis of the two theories. Based on this framework, Ho developed a method of
acquiring rough concepts [7], and Wu, Liu and Li proposed an approach for computing
accuracies of rough concepts and studied the relationships between the indiscernibility
relations and accuracies of rough concepts [27].

The notion of a formal context has been used in many studies under different names.
Shafer used a compatibility relation to interpret the theory of evidence [18, 19]. A com-
patibility relation is a binary relation between two universes, which is in fact a formal
context. Wong, Wang and Yao investigated approximation operators over two universes
with respect to a compatibility relation [25, 26]. Düntsch and Gediga referred to those
operators as modal-style operators and studied a class of such operators in data analy-
sis [5]. The derivation operator in formal concept analysis is a sufficiency operator, and
the rough set approximation operators are the necessity and possibility operators used in
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modal logics. By focusing on modal-style operators, we have a unified operator-oriented
framework for the study of the two theories.

Pagliani used a Heyting algebra structure to connect concept lattices and approx-
imation spaces together [10]. Based on the algebra structure, concept lattices and ap-
proximation spaces can be transformed into each other. Wasilewski demonstrated that
formal contexts and general approximation spaces can be mutually represented [21].
Consequently, rough set analysis and formal concept analysis can be viewed as two re-
lated and complementary approaches for data analysis. It is shown that the extension
of a formal concept is a definable set in the approximation space. Qiet al. argued that
two theories have much in common in terms of the goals and methodologies [15]. They
emphasized the basic connection and transformation between a concept lattice and a
partition.

Wolski investigated Galois connections in formal concept analysis and their rela-
tions to rough set analysis [23]. A logic, called S4.t, is proposed as a good tool for
approximate reasoning to reflect the formal connections between formal concept anal-
ysis and rough set analysis [24].

Yao compared the two theories based on the notions of definability, and showed that
they deal with two different types of definability [33]. Rough set analysis studies con-
cepts that are defined by disjunctions of properties. Formal concept analysis considers
concepts that are definable by conjunctions of properties.

Based on those comparative studies, one can easily adopt ideas from one theory to
another. The applications of rough set always lead to approximations and reductions in
formal concept analysis. The approximations of formal concept analysis result in new
types of concepts and concept lattices.

Approximations and reductions in concept lattices

Many studies considered rough set approximations in formal concept lattice [4, 8,
11, 16, 17, 20, 23]. They will be discussed in Section 5.2. The present study is in fact a
continuation in the same direction.

Zhang, Wei and Qi examined property (object) reduction in concept lattice using
the ideas from rough set analysis [39]. The minimal sets of properties (objects) are
determined based on criterions that the reduced lattice and the original lattice show
certain common features or structures. For example, two lattices are isomorphic.

Concept lattices in rough sets

Based on approximation operators, one can construct additional concept lattices.
Those lattices, their properties, and connections to the original concept lattice are stud-
ied extensively by D̈untsch and Gediga [5], and Wolski [23]. The results provide more
insights into data analysis using modal-style operators.

Yao examined semantic interpretations of various concept lattices [34]. One can
obtain different types of inference rules regarding objects and properties. To reflect
their physical meanings, the notions of object-oriented and property-oriented concept
lattices are introduced.
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5.2 Approximations in formal concept lattice

Saquer and Deogun suggested that all concepts in a concept lattice can be considered as
definable, and a set of objects can be approximated by concepts whose extensions ap-
proximate the set of objects [16, 17]. A set of properties can be similarly approximated
by using intensions of formal concepts.

For a given set of objects, it may be approximated by extensions of formal concepts
in two steps. The classical rough set approximations for a given set of objects are first
computed. Since the lower and upper approximations of the set are not necessarily the
extensions of formal concepts, they are then approximated again by using derivation
operators of formal concept analysis.

At the first step, for a set of objectsA ⊆ U , the standard lower approximation
apr(A) and upper approximationapr(A) are obtained. At the second step, the lower
approximation of the set of objectsA is defined by the extension of the formal concept
(apr(A)∗∗, apr(A)∗). The upper approximation of the set of objectsA is defined by
the extension of the formal concept(apr(A)∗∗, apr(A)∗). That is,

eapr(A) = apr(A)∗∗,
eapr(A) = apr(A)∗∗.

If apr(A) = apr(A), we haveapr(A)∗∗ = apr(A)∗∗. Namely, for a definable setA,
its lower and upper formal concept approximations are the same. However, the reverse
implication is not true. A set of objects that has the same lower and upper approxima-
tions may not necessarily be a definable set. This shortcoming of their definition is the
same as the lattice-theoretic formulations of approximations.

Hu et al. suggested an alternative formulation [8]. Instead of defining an equiva-
lence relation, they defined a partial order on the universe of objects. For an object,
its principal filter, which is the set of objects “greater than or equal to” the object and
is called the partial class by Huet al., is the extension of a formal concept. The fam-
ily of all principal filters is the set of join-irreducible elements of the concept lattice.
Similarly, a partial order relation can be defined on the set of properties. The family of
meet-irreducible elements of the concept lattice can be constructed. The lower and up-
per approximations can be defined based on the families of meet- and join-irreducible
elements in concept lattice. Their definitions are similar to our lattice-theoretic defini-
tions. However, their definition of lower approximation has the same shortcoming of
Saquer and Deogun’s definition [16].

Some researchers used two different systems of concepts to approximate a set of
objects or a set of properties [4, 11, 14, 20, 23]. In addition to the derivation operator,
one can define the two rough set approximation operators [5, 23, 25, 26, 34].

A2 = {y ∈ V | Ry ⊆ A},
A3 = {y ∈ V | Ry ∩A 6= ∅},

and

B2 = {x ∈ U | xR ⊆ B},
B3 = {x ∈ U | xR ∩B 6= ∅}.

18



Düntsch and Gediga referred to∗, 2 and3 as modal-style operators, called sufficiency
operator, necessity operator and possibility operator, respectively [4, 5].

The two operators can be used to define two different types of concepts and concept
lattices [5, 34]. A pair(A,B) is called an object-oriented concept ifA = B3 and
B = A2. The family of all object-oriented concepts forms a complete lattice, denoted
asLo(U, V, R). A pair (A,B) is called a property-oriented concept ifA = B2 and
B = A3. The family of all property-oriented concepts also forms a complete lattice,
denoted asLp(U, V,R). Similar to the formal concept lattice, the set of objectsA is
referred to as the extension of the concept, and the set of propertiesB is referred to as
the intension of the concept. With respect to those new concept lattices, one can apply
the formulation of approximations discussed previously in a similar way. For example,
we may study the approximations of a set of objects by using an object-oriented concept
lattice.

Another class of approximation operators can be derived by the combination of
operators2 and3. The combined operators23 and32 have following important prop-
erties [4]:

1). 23 is a closure operator on U and V,

2). 23 and 32 are dual to each other,
3). 32 is an interior operator on U and V.

Based on those properties, approximation operators can be defined [4, 11, 20, 23]. The
lower and upper approximations of a set of objects and a set of properties can be defined,
respectively, based on two systems:

rapr(A) = A23, rapr(B) = B23,

and

rapr(A) = A32, rapr(B) = B32.

The operators23 and32 and the corresponding rough set approximations have been
used and studied by many authors, for example, Düntsch and Gediga [4], Pagliani [10],
Pagliani and Chakraborty [11], Pei and Xu [14], Shao and Zhang [20], and Wolski [23,
24].

If a set of objectsA equals to its lower approximationrapr(A), we say thatA is a
definable set of objects in the systemLo(U, V, R). If the set of objectsA equals to its
upper approximationrapr(A), we say thatA is a definable set of objects in the system
Lp(U, V, R). The lower and upper approximations of a set of objects are equal if and
only if the set of objects is a definable set in both systemsLo(U, V, R) andLp(U, V,R).
Similarly, the lower and upper approximations of a set of properties are equal if and only
if the set of properties is a definable set in both systemsLo(U, V, R) andLp(U, V, R).

6 Conclusion

An important issue of rough set analysis is the approximations of undefinable sets using
definable sets. In the classical rough set theory, the family of definable sets is a subsys-
tem of the power set of a universe. There are many approaches to construct subsystems
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of definable sets [30, 36]. Formal concept analysis provides an approach for the con-
struction of a family of definable sets. It represents a different type of definability. The
notion of approximations can be introduced naturally into formal concept analysis.

Formal concepts in a formal concept lattice correspond to definable sets. Two types
of approximation operators are investigated. One is based on the lattice-theoretic for-
mulation and the other is based on the set-theoretic formulation. Their properties are
studied in comparison with the properties of classical rough set approximation opera-
tors. A distinguishing feature of the lower approximation defined by set-theoretic for-
mulation is that a subset of the universe is approximated from below by a family of
definable sets, instead of a unique set in the classical rough set theory.

The theory of rough sets and formal concept analysis capture different aspects of
data. They can represent different types of knowledge embedded in data sets. The intro-
duction of the notion of approximations into formal concept analysis combines the two
theories. It describes a particular characteristic of data, improves our understanding of
data, and produces new tools for data analysis.

The sufficiency operators∗ is an example of modal-style operators [4, 5, 33]. One
can study the notion of rough set approximations in a general framework in which
various modal-style operators are defined [4, 5, 10, 33].
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