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Abstract. Real-world decision making typically involves the three op-
tions of acceptance, rejection and non-commitment. Three-way decisions
can be motivated, interpreted and implemented based on the notion of
information granularity. With coarse-grained granules, it may only be
possible to make a definite decision of acceptance or rejection for some
objects. A lack of detailed information may make a definite decision im-
possible for some other objects, and hence the third non-commitment
option is used. Objects with a non-commitment decision may be further
investigated by using fine-grained granules. In this way, multiple levels
of granularity lead naturally to sequential three-way decisions.

1 Introduction

Two fundamental notions of rough set theory are knowledge granularity [15, 16]
and the approximation of a concept by a pair of lower and upper approxima-
tions [3,4] or three regions. In this paper, I argue that the two notions play an
equally important role in a theory of three-way decisions [29]. Three-way de-
cisions can be motivated, interpreted and implemented based on the notion of
information and knowledge granularity. Three regions of rough sets [15], and in
particular probabilistic rough sets [3,4, 24, 25], lead naturally to three-way de-
cisions [27, 28], which may produce better results in rule learning [5]. A theory
of three-way decisions may be viewed an extension of rough set theory, based
on the same philosophy but goes beyond. Three-way decisions focus on a more
general class of problems where a set of objects are divided into three pair-wise
disjoint regions [2,29].

A two-way decision consists of either an acceptance or a rejection of an
object for a specific purpose. However, a two-way decision may not always be
possible in real life in the context of multiple levels of granularity and multiple
levels of approximations. At a higher level of granularity, one may have a more

* This work is partially supported by a discovery grant from NSERC Canada.

! Publication information of this paper:
Yao, Y.Y., Granular computing and sequential three-way decisions. In: Lingras, P.,
Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI),
vol. 8171, pp. 16-27. Springer, Heidelberg (2013).



abstract and compact representation of a decision problem by omitting details,
leading to a faster decision process but a less accurate result. On the other hand,
at a lower level of granularity, one may have a more concrete and elaborate
representation, leading to a slower decision process but a more accurate result.
Therefore, making the right decision at the right level is a crucial issue. Three-
way decisions, consisting of acceptance, rejection, and non-commitment, are a
practical solution. When the available information is insufficient or the evidence
is not strong enough to support an acceptance or a rejection at a particular level
of granularity, a third option of non-commitment allows us to defer a decision
to the next level of granularity.

Three-way decisions may be related to a basic principle of granular comput-
ing. By utilizing granular structures, granular computing [1, 17,21, 22, 31| focuses
on a set of philosophy, methodology and paradigm for structured thinking, struc-
tured problem solving and structured information processing at multiple levels
of granularity [26]. Granular structures consist of many hierarchies for multiview
descriptions of a problem, with each hierarchy being composed of multiple levels
of abstraction [26]. In an earlier paper [23], I stated that a basic principle of
computing, guided by granular structures, is to
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- examine the problem at a finer granulation level with more detailed
information when there is a need or benefit for doing so.”

The objective of the present study is to introduce sequential three-way decisions
based on this principle. We want to make a decision “at a finer granulation level
with more detailed information when there is a need or benefit for doing so.”
There are two contributions from the study. One is to provide a granular
computing perspective on three-way decisions. I will demonstrate that three-way
decisions are superior and necessary in the context of multiple levels of informa-
tion granularity. That is, a decision problem is more appropriately formulated
as a sequence of three-way decisions, leading finally to two-way decisions. The
other is a demonstration of a basic principle of granular computing and, hence,
makes it easily understandable and applicable to a wide range of applications.

2 An Overview of Three-way Decisions

By extending the three-way classification of rough set theory and synthesizing
results across many disciplines, I examined a theory of three-way decisions in an
earlier paper [29]. The main results are briefly reviewed in this section.

Suppose U is a finite nonempty set of objects and C is a finite set of con-
ditions. Depending on applications, a condition in C may be a criterion, an
objective, or a constraint. A decision task is to divide U into regions according
to the satisfiability of objects of the set of conditions C. Formally, the problem
of three-way decisions can be stated as follows:

The problem of three-way decisions is to divide U, based on the set of
conditions C, into three pair-wise disjoint regions, POS, NEG, and BND,



called the positive, negative, and boundary regions, respectively. The
positive region POS consists of those objects that we accept as satisfying
the conditions and the negative region NEG consists of those objects that
we reject as satisfying the conditions. For objects in the boundary region
BND, we neither accept nor reject, corresponding to a non-commitment.

The satisfiability reflects a nature of the objects. It may be either qualitative or
quantitative; it may also be known, partially known, or unknown. For an object
x € U, let s(x) denote the satisfiability of x of the set of conditions C and is
called the state of x. Depending on the set of all possible values of s(-), we may
have two-state and many-state decisions problems.

For the two-state case, if we know the true state s(z) for every object, we do
not really need three-way decisions, as we can simply classify objects into two
regions based on s(z). In many situations, we may not know the true state of
an object and may only construct a function v(x) to help us in probing the true
state s(z). The value v(x) is called the decision status value of z and may be
interpreted as the probability or possibility that = satisfies C. In this context,
three-way decisions seem to be appropriate. For the many-state case, even if
we know s(z), a three-way decision is still necessary. The results of three-way
decisions may be viewed as a three-valued approximation.

In the rest of this paper, I only consider a two-state three-way decisions
model that uses an evaluation v : U — L to estimate the states of objects in U,
where (L, <) is a totally ordered set. By introducing a pair of thresholds («, 8),
8 < a (ie., B X aand 8 # «), on the evaluation v, we construct three regions
as follows:

POS(s,5)(v) = {z € U | v(z) = a},
NEG(a,5)(v) ={z € U | v(z) = B},
BND(, p)(v) ={z €U | B <v(z) < a}, (1)

where for a,b € L,a = b<=b<aand a < b <= (a X b,a # b). Condition
B < « implies that the three regions are pair-wise disjoint. Since some of the
regions may be empty, the three regions do not necessarily form a partition of
the universe U.

From the formulation, we must consider at least the following issues:

— Construction and interpretation of the totally ordered set (L, =<).
— Construction and interpretation of the evaluation v(-).
— Construction and interpretation of the pair of thresholds («, 35).

The value v(z) may be interpreted as the probability, possibility or degree to
which x satisfies C. The pair of threshold («, 8) can be related to the cost or
error of decisions. Those notions will be further discussed in the next section.

3 A Model of Sequential Three-way Decisions

In this section, I propose a sequential three-way decision model for two-state
decision model and show its advantages over two-way decisions.



3.1 Simple Two-way Decisions

For a two-state decision problem, we assume that each object € U is in one of
the two states: either satisfies the set of conditions C or does not. The state of
an object is an inherent property of the object, independent of whether we have
sufficient information to determine it. Let a mapping s : U — {0, 1} denote the
states of all objects as follows:

s(z) = {1, x satisfies C, . (2)

0, x does not satisfy C.
We make a decision regarding the true state of an object based on a represen-
tation, a description of, or some information about . In many situations, the
available information may be incomplete and uncertain, and the set of conditions
may not be formally and precisely stated. It is impossible to determine the state
of each object with certainty. We can construct an evaluation function to assist
in a decision-making process.

Let Des(x) denote a description of  and Up denote the set of all possible
descriptions. An evaluation, v : Up — L, is now given by a mapping from Up
to a totally ordered set (L, =). The quantity v(Des(z)) is called the decision
status value of z. Intuitively, a larger value v(Des(z)) suggests that the object x
satisfies the conditions C to a higher degree. Based on the decision status values
and a threshold v € L, we can divide U into a positive region and a negative
region based on a strategy of two-way decisions:

POS,(v) = {z € U | v(Des(z)) = v},
NEG, (v) ={z € U | v(Des(x)) < ~}. (3)

The positive region consists of those objects that we accept as satisfying the
conditions in C and negative region consists of those objects that we reject as
satisfying the conditions in C.

3.2 Sequential Three-way Decisions

In the simple two-way decisions, we use a single representation of an object. In
real-world decision making, we may consider a sequence of three-way decisions
that eventually leads to two-way decisions. At each stage, new and more infor-
mation is acquired. For example, in clinical decision making, based on available
information, a doctor may decide to treat or not to treat some patients; for some
other patients, the doctor may prescribe further tests and defer a decision to the
next stage [14]. The basic ideas of sequential three-way decisions appear in a
model of sequential three-way hypothesis testing introduced by Wald [20] and
a model of sequential three-way decisions with probabilistic rough sets [30]. Li
et al. [7] consider a sequential strategy for making cost-sensitive three-way deci-
sions. Sosnowski and Slezak [18] introduce a model of networks of comparators
for solving problems of object identification, in which a sequence of comparators
is used for decision-making. In this paper, I present another way to formally



formulate sequential three-way decisions through the notion of multiple levels of
granularity. The main components of the proposed model are discussed below.

Multiple levels of granularity. We assume that there are n + 1, n > 1,
levels of granularity. For simplicity, we use the index set {0,1,2,...,n} to denote
the n+ 1 levels, with 0 representing the finest granularity (i.e., the ground level)
and n the coarsest granularity. The simple two-way decisions can be viewed as
decision-making at the ground level 0. For sequential three-way decisions, we
assume that a three-way decision is made at levels n,n—1,...,1 and a two-way
decision is made at the ground level 0. That is, the final result of sequential
three-way decisions is a two-way decision. At each stage, only objects with a
non-commitment decision will be further explored in the next level.

Multiple descriptions of objects. With n+1 levels, we have n+1 distinct
representations and descriptions of the same object at different levels. Suppose

Desp(z) = Des;(x) < ... < Des,(z), (4)

is a sequence of descriptions of object z € U with respect to n + 1 levels of
granularity. The relation < denotes a “finer than” relationship between different
descriptions. A description at a coarser level is more abstract by removing some
details of description in a finer level. It may be commented that the languages
used to describe objects may be different at different levels. Consequently, the
processing methods and costs may also be different.

Multiple evaluations of objects. Due to different representations at dif-
ferent levels, we need to consider different evaluations too. Let v;, 0 < i < n,
denote an evaluation at level ¢ whose values are from a totally ordered sets
(L;, =;). In contrast to the strategy of simple two-way decision making, in a se-
quential three-way decision process the same object may be evaluated in several
levels. Therefore, we must consider the extra costs of the decision process at dif-
ferent levels. The costs may include, for example, the cost needed for obtaining
new information and the cost of computing the evaluation v;.

Three-way decisions at a particular level. Except the ground level 0,
we may make three-way decisions for objects with a non-commitment decision.
Suppose U; 41 is the set of objects with a non-commitment decision from level
i + 1. For level n, we use the entire set U as the set of objects with a non-
commitment decision, i.e., U,+1 = U. For level i, 1 < i < n, we can choose a
pair of thresholds «;, 8; € L; with 8; <; «;. Three-way decision making can be
expressed as:

POS(q;,6:)(vi) = {2 € Uiy1 | vi(Des;(x)) =i o},

NEG (4, 5,) (vi) = {2 € Uiy | vi(Desi(x)) =; Bi},

BND(ai,[i’i)(rUi) = {117 S Ui+1 ‘ Bi < vi(Desi(x)) =i Oéi}. (5)
The boundary region gives the set of objects with a non-commitment decision,
namely, U; = BND,, 3,)(vi). For level 0, a two-way decision is made for the set
of objects U; based on a single threshold 7y € Ly.

Due to a lack of detailed information, one may prefer to a deferment decision
to increase the chance of making a correct acceptance or rejection decision when



Algorithm 1: S3D (Sequential three-way decisions)

Input: A set of objects U, a family of descriptions for each object {Des;(z)}, a
set of evaluations {v;}, and a set of pairs of thresholds {(au, 8:)};
Output: Two regions POS and NEG;

begin
POS = 0);
NEG = 0
i =n;
Un+1 = U;
U, = 0;

while U;11 # 0 and ¢ > 0 do

POS(ai’Bi)(’Uz‘) = {ZE € Ui+1 | 'UZ'(DeSi(ZE)) ai};

NEG (a;,6,)(vi) = {z € Uiy1 | vi(Desi(z)) =i Bi};
BND(q, 5,)(vi) = {x € Usy1 | Bi <i vi(Desi(x)) < as};
POS = POSUPOS,,,5,)(vi);

NEG = NEG U NEG(ai,,Bi)(Ui);

Ui = BND(ai,Bi)(W);

t=1—1;

i

=
=

if U1 # 0 then
POS4, (v0) = {x € U | vo(Deso(x)) = v0};
NEGoy (v0) = {z € U | wo(Desol)) < 10};
POS = POS U POS., (v0);

NEG = NEG UNEG., (v0);

return POS, NEG;

Fig. 1. Algorithm of sequential three-way decisions

more evidence and details are available at lower levels. This can be controlled
by setting proper thresholds at different levels. Typically, one may use a larger
threshold a and a smaller threshold g at a higher level of granularity [30].

By summarizing the discussion, Figure 1 gives the algorithm S3D of sequen-
tial three-way decisions. In the algorithm, the set U; is initialized to the empty
set. It will remind to be empty if an empty boundary region is obtained before
reaching the ground level 0. In addition to the construction of the evaluation and
thresholds at each level, for sequential three-way decisions, one must consider the
construction and interpretation of a sequence of multiple levels of granularity.

4 Comparison of Simple Two-way Decisions and
Sequential Three-way Decisions

In this section, I provide an analysis of costs associated with two-way and se-
quential three-way decisions to demonstrate that there may be advantages to
using a sequence of three-way decisions.



4.1 Total Cost of Decisions

Simple two-way decisions and sequential three-way decisions can be compared
from two aspects. One is quality of the decision result in terms of errors or costs
caused by incorrect decisions and the other is cost of the decisions process for
arriving at a decision. Both types of cost have been well studied and widely used
in comparing different algorithms of two-way classification. In comparison, the
latter has received less attention, except for the case of decision-tree based clas-
sification methods [10-13,19]. When classifying an object with a decision tree,
it is necessary to perform a sequence of tests of some internal nodes of the tree.
The cost of the decision process can be viewed as the total cost of all required
tests. The proposed sequential three-way decisions share some similarities with
decision-tree based methods, but focus more on multiple levels of granularity
and multiple representations of an objects. The cost of decision process becomes
an important factor [6,8, 9.

Suppose COSTR and COSTp denote, respectively, the cost of the decision
result and the cost of the decision process. It is reasonable to assume that the
total cost of decisions is a function for pooling together the two costs, that is,

COST = F(COSTr, COSTp). (6)

There are many choices of the function F'. Two special forms of the function are
the simple linear combination and product:

COST' = wg * COSTR + wp x COSTp,
COST" = (COSTR)* x (COSTp)®, (7)

where the weights wg > 0, wp > 0 and wg + wp # 0, and a > 0, b > 0
and a + b # 0, represent respectively the relative importance of the two types
of costs. There seems to be an inverse relationship between the two types of
costs. A decision-making method may produce a high quality result but tends
to require a large processing cost. It may also happen that a decision-making
method may require a small processing cost but produces a low quality result.
In general, there is a trade-off between the two types of costs. Finding the right
balance holds the key to making effective decisions.

4.2 Cost of the Decision Result

The result of simple two-way decisions and the final result of sequential three-
way decisions are, respectively, a division of U into two regions POS and NEG.
Some of the decisions of acceptance and rejection for constructing the two regions
may, in fact, be incorrect. Let S} = {x € U | s(xz) = 1} be the set of objects in
state 1 and Sy = {z € U | s(z) = 0} be the set of objects in state 0. Table 1
summarizes the errors and costs of various decisions, where S = 1 and S = 0
denote the two states of objects and | - | denotes the cardinality of a set.



Table 1. Information of decision result

s(z) =1 (P) s(z) =0 (V) total
aa: accept|Correct acceptance|Incorrect acceptance
|[POS N S| [POS N So| |[POS]|
ar: reject | Incorrect rejection | Correct rejection
INEG N S1| INEG N So| INEG]|
total |51| |So| |U|

(a) Errors of decision result

s(x) =1 (P) s(z) =0 (N)
aa: accept|Aap = AMaa|S = 1)|Aav = A(aa|S =0)
ar: reject [Arp = A(agr|S = 1)|Aay = A(ar|S =0)

(b) Costs of decision result

The rates of two types of error, i.e., incorrect acceptance error (IAE) and
incorrect rejection error (IRE), are given by:

IPOS N So|
JAE = 222 201
[POS|
_ INEGN S|
IRE = TNEG] (8)

where we assume that the positive and negative regions are nonempty, otherwise,
the corresponding rate of error is defined as 0. Let a(x) denote a decision made
for object x. The total cost of decision results of all objects is computed as,

COSTr =Y _ Ma(x)|S = s(x))
zeU
= [POS N 81| * A(aa|S = 1) +|POSN Sp| * A(aa|S = 0) +
INEG N S1| % A(ag|S = 1) + [NEG N Sy| * A(ag|S = 0)
= |POS| % ((1 — IAE) * Maa|S = 1) + IAE % A(aa|S = 0)) +
INEG| * (IRE * Aag|S = 1) + (1 — IRE) * A(ag|S = 0)).  (9)

The total cost of decision result is related to the two types of decision error. The
rates of errors and total cost may be used to design an objective function for
finding an optimal threshold « in simple two-way decisions.

Consider a special cost function defined by:

Aap =0,  dan =1
Arp =1, Arn = 0. (10)



There is a unit cost for an incorrect decision and zero cost for a correct decision.
By inserting this cost function in to Equation (9), we have

COSTR = |[POS| * IAE + [NEG| * IRE
= |POS N So| + INEG N Sy ]. (11)

The first expression suggests that the cost is a weighted sum of the two rates
of incorrect decisions. The cost based measure is more informative than rates of
incorrect decision, as the latter can be viewed as a special case of the former.
The second expression suggests that the cost is the number of objects with an
incorrect decision.

4.3 Costs of the Decision Process

For simple two-way decisions, we assume that all decisions are made at the
ground level 0. The cost for processing each object is Cy and the cost of the
decision process is given by:

When the cost C is very large, the cost of the decision process COST»p may be
very high. For many decision-making problem, we may not need to acquire all
information of the ground level 0. This suggests a strategy of sequential decisions
in which additional information is gradually acquired when it is necessary.

Let C; denote the cost needed for evaluating an object at level . It is rea-
sonable to assume,

Co>C; >0, i=nn—1,...,1 (13)

That is, the cost of the decision process at an abstract level is strictly less
than at the ground levels; otherwise, we will not have any advantages of using
the strategy of sequential three-way decision making. The magnitudes of C;’s
depend on special applications. Consider a special case where C; represents time
needed for computing the evaluation at level ¢. We can assume that

Cp<Chq1<...<Cy. (14)

This is equivalent to saying that we can make a faster decision at a higher level
of granularity, as we do not have to consider minute details of the lower levels.

According to the condition Cy > C; >0, i =n,n—1,...,1, if we can make
a definite decision of an acceptance or a rejection at higher levels of granularity,
we may be able to avoid a higher cost at the ground level 0. Let I(x) denote
the level at which a decision of an acceptance or a rejection is made for x. The
object x is considered in all levels from level n down to level I(z). The processing
cost of x can be computed as:

COSTsp(z) = Y Ci=Cpya), (15)
i=l(x)



where C,,_,; denote the cost incurred from level n down to level i. The total
processing cost for all objects can be computed as follows:

COSTsp = Y  COSTsp(x)

zcU

= (IPOS(a, 5, (v3)] + INEG q, 5, (v3)]) * Crss. (16)

=0

According to this equation, if the cost Cjy is very large and we can make an
acceptance or a rejection decision for a majority of objects before reaching the
ground level 0, the advantages of sequential three-way decisions will be more pro-
nounced. On the other hand, if a definite decision of an acceptance or a rejection
is made for the majority of objects at lower levels of granularity, sequential
three-way decisions would be inferior.

To gain more insights into sequential three-way decisions, let us consider a
special composition of the cost Cj:

C;=CF +cf, (17)

where CF denotes the cost for computing the evaluation v; and C#! denotes the
cost for acquiring additional information at level i. For this interpretation, we
have the following assumption:

ct<cE <. .<cf.

The assumption suggests that the cost for computing the evaluation function is
lower at a higher level granularity due to the omission of detailed information.
For simple two-way decisions at ground level 0, we must consider all information
acquired from levels n down to 1. For an object z, the costs of decision pro-
cesses of simple two-way decisions and sequential three-way decisions are given,
respectively, by:

COSTyp(z) = C¥ + Cit,

n

COSTsp(x) = Cp Ly + O (18)

n—l(z)*

It follows that

COSTyp(x) — COST3p(x) = C{jay_1) 50 — (CF

n—l(z

—CP). (19)

The first term represents the extra cost of simple two-way decisions for acquir-
ing extra information from level {(z) — 1 down to level 0, and the second term
represents the extra cost of sequential three-way decisions in computing evalu-
ations from level n down to level {(z). That is, sequential three-way decisions
reduce the cost of acquiring information at the expense of computing additional
evaluations. If the difference in Equation (19) is greater than 0, then sequential
three-way decisions have an advantage of a lower cost of the decision process.
In situations where the cost of acquiring new information is more than the cost

10



of computing evaluations, sequential three-way decisions are superior to sim-
ple two-way decisions at the ground level 0 with respect to the cost of decision
process. In addition, when simple two-way decisions and sequential three-way
decisions produce decision results of comparable quality, sequential three-way
decisions are a better choice.

In general, we want to have sequential three-way decisions that produce the
similar decision quality as simple two-way decisions but have a lower cost of
decision process. To achieve this goal, one needs study carefully the cost struc-
tures of sequential three-way decisions in order to determine the best number
of levels and best thresholds at each level. This implies that designing a se-
quential three-way decision procedure is more difficulty than designing a simple
two-way decision procedure. There are many challenging problems to be solved
for sequential three-way decisions.

5 Conclusion

In this paper, I present a granular computing perspective on sequential three-way
decisions. Multiple levels of granularity lead to multiple representations of the
same object, which in turn leads to sequential three-way decisions. Sequential
decisions rely on a basic principle of granular computing, i.e., one only examines
lower levels of granularity if there is a benefit. By considering the cost of the
decision process, I show that a sequential three-way decision strategy may have
a lower cost of the decision process than a simple two-way decision strategy, as
the former may require less information and demand less time for computing
evaluations at higher levels of granularity. Sequential three-way decisions are
particularly useful for practical decision-making problems when information is
unavailable and is acquired on demands with associated cost.

Sequential three-way decisions are much more complicated than simple two-
way decisions. There are many challenging issues. One must construct multiple
levels of granularity and multiple representations of the same object. One must
consider more parameters, such as the number of levels, evaluations at different
levels, and the thresholds at each level. One must also study cost structures that
make sequential three-way decisions a better strategy.
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